Modelling Carrying Capacity

NCK, 5 November 2010

Tineke Troost, Luca van Duren
"Just wait 'til I get you home, my pretty."
Carrying capacity

“The amount of external influences that an ecosystem can support without significant negative impacts to its natural state”.

“Just wait 'til I get you home, my pretty.”
External influences

- Algae
- Shellfish
- Birds
- Humans
External influences

Fisheries → Birds → Shellfish → Algae
External influences

- Fisheries
- Aquaculture
- Shellfish
- Birds
- Algae
- Humans
External influences

Fisheries

Aquaculture

Mussel Seed Capture Devices (MZI's)

Algae

Shellfish

Birds
External influences

- Fisheries
- Aquaculture
- Mussel Seed Capture Devices (MZI's)
- Algae
- Birds
- Shellfish
- Invasive species
How to assess Carrying Capacity?

Biomass

- birds
- shellfish
- algae
How to assess Carrying Capacity?

Biomass

- birds
- shellfish
- algae

Generation time

- 2 years (730 days)
- 1 year (365 days)
- 2 days
How to assess Carrying Capacity?

Biomass

- birds
- shellfish
- algae

Generation time

- 2 years (730 days)
- 1 year (365 days)
- 2 days

Production

- birds
- shellfish
- algae
Primary production

Drivers:

- Nutrients (input, residence time)
- Light (turbulence, depth)
PP in shallow coastal estuaries

Western Wadden Sea (Riegman)

Oosterschelde (Malkin & Kromkamp)
In shallow estuarine systems: large bottom-to-water ratio
--> relatively large role for bottom grazers
Secondary production

Drivers:

- Food (food concentration, quality, current velocity, …)
- Mortality / Predation
Drivers:

- Food (food concentration, quality, current velocity, …)
- Mortality / Predation

feedbacks!
Feedbacks of grazers on primary production

Light
(turbidity)
Feedbacks of grazers on primary production

- Nutrient recycling
- Respiration
- Defaecation
- Light (turbidity)
- Nutrient storage
Feedbacks of grazers on primary production

Nutrient recycling

Light (turbidity)

Grazing
Overgrazing

- Filtration rate of a mussel bed: ± 6 m³ hr⁻¹ per m²
- Average depth Oosterschelde: 9m
Overgrazing

- Filtration rate of a mussel bed: ± 6 m³ hr⁻¹ per m²
- Average depth Oosterschelde: 9m

→ Water column can be filtered in 1.5 hr
• Filtration rate of a mussel bed: $\pm 6 \ m^3 \ hr^{-1} \ per \ m^2$
• Average depth Oosterschelde: 9m

→ Water column can be filtered in 1.5 hr
→ The whole Oosterschelde-system is filtered in 4-5 days!
Overgrazing

- Filtration rate of a mussel bed: $\pm 6 \text{ m}^3 \text{ hr}^{-1} \text{ per m}^2$
- Average depth Oosterschelde: 9m

→ Water column can be filtered in 1.5 hr
→ The whole Oosterschelde-system is filtered in 4-5 days!

If Grazing > Primary Production → Overgrazing
Selective grazing

Shellfish

Algae
Selective grazing

Larger algae are eaten
→ smaller algae remain in the system
Generic Ecosystem Model (Delft3D-GEM)

Nutrients
- N
 - NH₄-N
 - NO₃-N
- P
 - PO₄-P
 - AIP
 - Si

Algae
- C
- N
- P
- Si
- photosynthesis
- respiration
- nitrification
- mineralisation
- consumption
- mortality
- settling

Detritus
- C
- N
- P
- Si
- metabolism
- grazing
- settling
- oxygen consumption

Detritus in Sediment
- C
- N
- P
- Si
- mineralisation
- mortality

AIP in sediment
- C
- N
- P
- Si
- settling

Microphytobenthos
- C
- N
- P
- Si
- photosynthesis
- settling

Extinction
- PAR
- reaeration

Grazers
- consumption
- grazing
- oxygen consumption

Grazers
- consumption
- grazing

DO
- production
- consumption
- reaeration

N₂ denitrification
- mineralisation & nitrification

Nutrient cycling
- AIP
 - adsorption

Microbial processes
- autolysis
- nitrate reduction
- mineralisation & nitrification
- biodeposition
- biodeposition
- settling
Grazer module

Dynamic Energy Budget (DEB) model for shellfish
Oosterschelde spatial model
Primary production is mainly determined by depth.
Primary production is mainly determined by depth.
Primary production is mainly determined by depth.
Primary production is mainly determined by depth

- Nutrient limited
- Light limited
Grazing

Chlorophyll concentration

- without grazers
- with grazers
Grazing

Chlorophyll concentration

Primary production

- Without grazers
- With grazers

measured
- modelled without grazers
- modelled with grazers
Grazing:

- negative effect on algal concentration
Grazing:
- negative effect on algal concentration
- positive effect on primary production
Grazing:
- negative effect on algal concentration
- positive effect on primary production
- improved agreement with measurements
Effects SMC-mussels on primary production

- No grazers
- Existing grazer biomass

Graph showing:
- Primary production (gC/m²/yr) on the y-axis
- Percentage of actual grazer biomass (%) on the x-axis

Legend:
- O - existing grazer biomass
- O - no grazers
Effects SMC-mussels on primary production

The graph shows the relationship between primary production (gC/m²/yr) and the percentage of actual grazer biomass (%). The graph has two key points:

1. **No grazers**: This point represents the condition where no mussels are present, showing a baseline primary production.
2. **Existing grazer biomass**: This point indicates the primary production when mussels are present, showing a positive effect on primary production.

The graph also indicates the negative impact of overgrazing, where the primary production decreases significantly as the percentage of actual grazer biomass increases beyond a certain threshold.
The effect of adding grazers (e.g. SMCs or aquaculture) depends on the actual situation of the system.
Effects SMC-mussels on secondary production

Secondary production (gWW/yr)

Yield MZI mussels (gWW)

- oesters
- kolkels
- mosselen
- MZI-mosselen
Effects SMC-mussels on secondary production

The effect of adding grazers (e.g. SMCs or aquaculture) is different per species.
Parameter values from measurements and experiments

- ensis
- mussels
- cockles
- oysters
Other developments

- Asses the 2-way interaction between current velocity-shellfish filtration
Other developments

- Asses the 2-way interaction between current velocity-shellfish filtration

- Asses the effect of the spatial distribution of the MSC on the carrying capacity
Conclusions

- Feedback processes of shellfish on primary production can be significant (+ and -)
Conclusions

- Feedback processes of shellfish on primary production can be significant (+ and -)

- Impact of external influences on carrying capacity depends on actual situation!
Conclusions

- Feedback processes of shellfish on primary production can be significant (+ and -)

- Impact of external influences on carrying capacity depends on actual situation!

- Impact may differ per species
Conclusions

- Feedback processes of shellfish on primary production can be significant (+ and -)

- Impact of external influences on carrying capacity depends on actual situation!

- Impact may differ per species

- Best approach for ecosystem based studies: coupled modelling, field observations and experimental process studies