Time dependent subsidence modeling Ryszard HEJMANOWSKI

AGH University of Science and Technology Cracow/POLAND

Natural Gas Production

• reduces the pore pressure u in the rock formation of the reservoir ($u\downarrow$)

$$\sigma = \sigma' + u$$

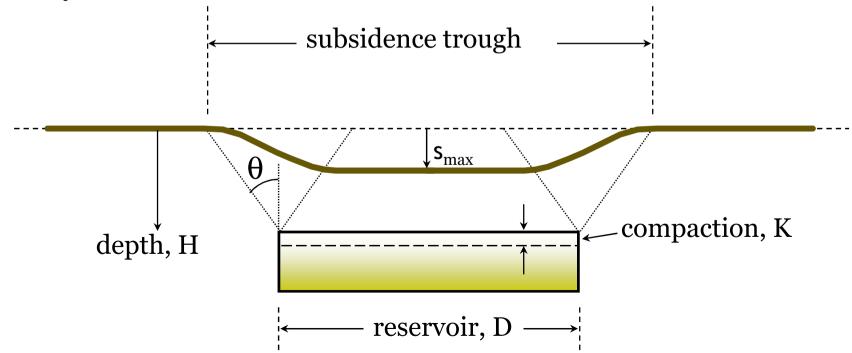
Terzaghi principle

• may cause the compaction of the reservoir if the effective stress σ' increases $(\sigma'\uparrow, \phi\downarrow)$

All reservoirs compact but it does not always lead to subsidence

it depends on the:

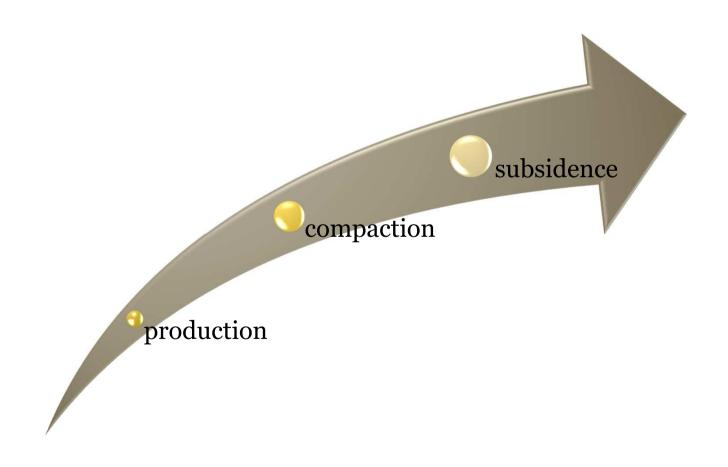
- dimension/depth ratio,
- total thickness of the reservoir,
- porosity of the reservoir



Compaction

- may cause subsidence:
 - in case of highly porous limestone (Valhall, Ekofisk),
 - in case of highly porous sandstones
 - in case of highly porous diatomite (Wilmington)

Subsidence modeling



Time dependence

- production changes over time,
- porosity depends on effective stress,
- effective stress depends on pore pressure depletion,
- compaction depends on porosity,
- subsidence depends on compaction,
- subsidence depends on the delay conditions of overburden...

What else...

Possible ways to subsidence prediction

Sophisticated modeling

Simple modeling

Simple modeling of surface subsidence

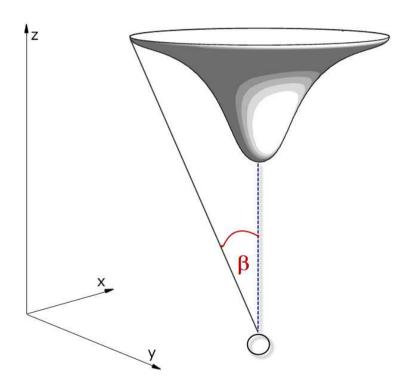
• It means:

- significant generalization of the reality,
- simple and fast calculation of the subsidence in 3D,
- few model parameters (easily estimated),
- relatively high accuracy.

Assumptions...

range of the subsidence trough depends on one

parameter

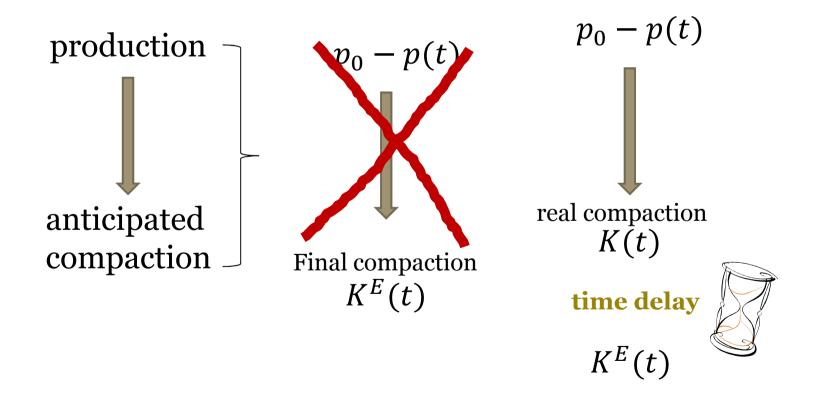


Assumptions...

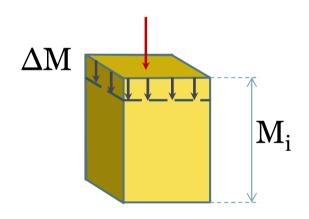
• Time delay between production and compaction

...but it is not so easy

Modeling of the time dependent phenomenon..



Compaction - change of the reservoir thickness

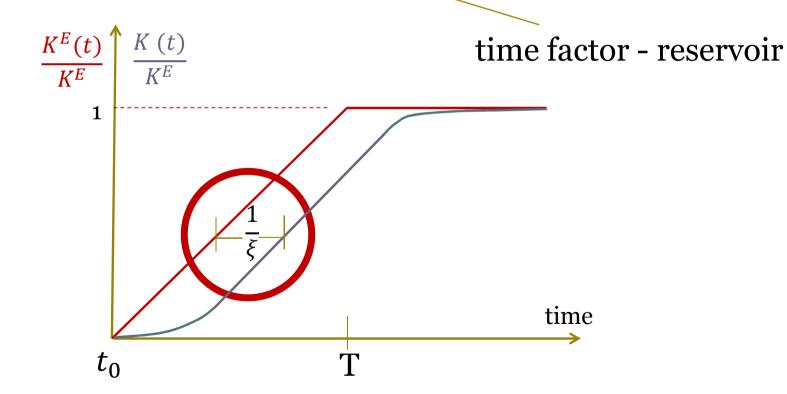


$$\Delta M_i = c_m \cdot \Delta p_i \cdot M_i$$

$$K^E = \frac{\Delta M}{M}$$
 final, uniaxial compaction

$$K^E(t) = c_m[p_0 - p_E(t)]$$

$$\frac{\partial K(t)}{\partial t} = \xi \left[K^{E}(t) - K(t) \right]$$



general solution:

general solution:

$$K(t) = K^{E}(t) - \exp(-\xi \cdot t) \cdot \int_{0}^{t} K(\lambda) \cdot \exp(\xi \cdot \lambda) d\lambda$$

$$K^{E}(t) = \frac{\partial K^{E}(t)}{\partial p(t)} \cdot \dot{p}(t)$$

$$K^{E}(t) = -c_{m} \cdot \dot{p}(t)$$

$$V^{E}(t) = -c_{m} \cdot \dot{p}(t)$$

Compaction volume

$$V_{\kappa}(t) = K(t) \cdot V$$

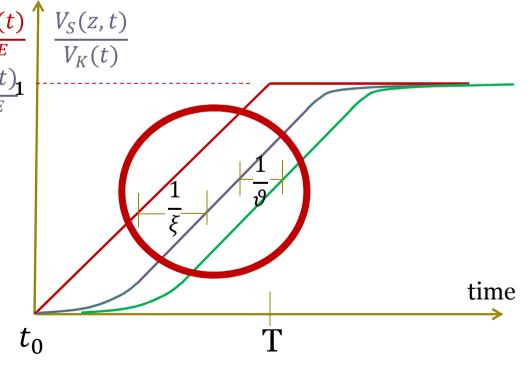
Volume of one reservoir element

Assumptions...

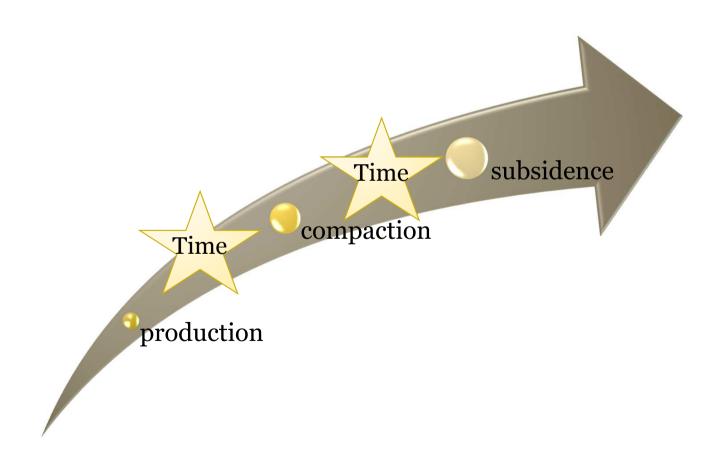
Time delay between compaction and subsidence

$$\frac{\partial V_S(z,t)}{\partial t} = \mathcal{O}[V_K(t) - V_S(z,t)]$$

time factor - overburden



Subsidence prediction - simplest way



Generalization of the reservoir shape...

