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Time Effects on Compaction & Subsidence

e Creep

e Consolidation

Apparent Time Effects:

o Stress Path / Arching-induced
o Elasto-Plastic Transition

Both Reservoir and Surrounding Rocks are involved
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Creep

* Creep Is characterized by 3 phases: Transient, Steady-state, and Accelerating,

where the rock may undergo failure

 Creep mechanisms are not fully understood —a common assumption is
stress-induced corrosion, which is strongly dependent on temperature & the

distance in stress space to rock failure
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Rate dependent compaction
model by de Waal & Smits,
1988
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Consolidation

 Pore pressure equilibration in a depleting reservoir occurs at different rates,
depending on permeability
 The characteristic time for reaching equilibrium follows a classical diffusion law:
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«100m sand with Darcy permeability ® seconds — minutes time-scale

*10m shale layer with nanoDarcy permeability ® 10-100 years time-scale

«100m shale with nanoDarcy permeability ® Myears time-scale

» What if all permeabilities are present at all length scales (Mossop's hypothesis?)?
* What about TenBoer?
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(1999); reservoir is elastically matched to the
surroundings (Poisson’s ratio = 0.20)

Notice: Stresses (and pore pressure) also change
in the surrounding rocks SINTEF ®NTNU




Depletion [MPa]

Reservoir Stress Path:
Impact on Compaction
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An Apparent Time Effect
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reflecting enhanced
arching

If depleted area
Increases with
depletion (aspect
ratio decreases),
compaction will
accelerate with time
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Core vs. Virgin compaction:
The "GRONstone" Experience

Test type B
A

Test type A
A

Stress
Stress

Cementahnn

, o) i
| Cementation B @ﬁ'-., Coting
ue af-"‘
i o™ e simulation
_ / ___________ »7 i / ___________ -.51 B!

"Virgin" compaction, along a "Coring" simulation, along 2 Coring
Stress Paths + "Core" compaction,

Reservoir Stress Path _
along a Reservoir Stress Path

Cementation: Sand & e.g. Sodium Silicate + CO,

Holt, Brignoli & Kenter; IJRM 2000 SINTEF & NTNU



Uniaxial

Virgin vs. Simulated Core ' Compaction

COMPETENT SYNTHETIC ROCK "GRONstone"

@Permanently reduced
stiffness of well cemented
cored material when reloaded
above forming stress: Typical
Initial stiffness ratio ~ 2

G0

50

@ Apparently similar
compaction after the virgin
material has reached yield
onset: For GRONSstone typical
10 MPa (» UCS) above the

s | forming ("in situ" stress)

Axial Stress (MPa)
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Axial Strain (milliStrain)

Holt, Brignoli & Kenter; IJRM 2000 SINTEF & NTNU



Axial Stress [MPa]

Virgin vs. Simulated Core Compaction

STRONG SYNTHETIC ROCK "EPOXtone"
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@ As for GRONstone, but
since EPOXtone is stronger
(UCS ~ 15 MPa), yield
onset occurs at higher
stress

@ Ratio between initial
virgin : core stiffness ~ 3-4
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Static vs Dynamic Moduli

@ Epoxy-cemented sandstone, formed at 30 MPa axial & 15 MPa
confining stress

@ Static = Dynamic Modulus directly after cementation; Undamaged
material

@ In simulated core, Dynamic > Static modulus, except during stress reversal
(unloading + reloading)
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NAM Core Compaction

* Field core from
NAM tested in
uniaxial strain
conditions (no

pore fluid)

 Note observed
nonlinearity
(above 80 MPa
axial stress) and
permanent
strains

30 October 2013
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Why are Static  Dynamic Moduli?

K, « Ky + K :}(')f%'gb'e
" K saturation
Dispersion Ultrasonic: f ~ 1 MHz
Sonic: f ~ 10 kHz
Static: f ~ 1 Hz
Plasticity Static moduli are measured at finite strains and

Include elastic + plastic deformation; Dynamic
moduli are measured at infinitesimal strain and are
hence purely elastic.

+ Scale effects, Anisotropy, a.o. SINTEF & NTNU



Static vs. Dynamic Moduli:
Strain amplitude effects

@ Experiments on dry sandstones show that:

@ In hydrostatic loading (by grain contact plastification, crushing

of asperities etc):
Kdyn P 1

stat :1+ PKdyn, ”’S_I_SO
@ In triaxial loading (by sliding cracks) :

— Edyn(l_ F)
stat 1+PE

Z —dyn

Fue, -e

Creep can be modelled within the same framework by making the F-parameter
time dependent — viscoplasticity relates to static moduli, viscoelasticity to dynamic

(e.g. ” Petroleum Related Rock Mechanics”
by Fjeer et al., 2008) SINTEF ©NTNU



Reservoir Monitoring Aspects:
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Competent Synthetic Sandstone

@Permanent drop of
velocities after coring &
reloading to forming stress

@Low stress sensitivity
during loading in the virgin
material

@Larger stress sensitivity
during unloading

@lLarge stress dependence
In the simulated core!

Effective vertical stress (MPa)
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Holt, Brandshaug & Cundall,

Discrete Particle Modelling:
"Best fit” between Laboratory and

PFCSP simulations of GRONstone

Virgin GRONstone

5x2.5x2.5 mm sample

Cored GRONstone
Cored PFC

Eop=8 GPa; Shear = Tensile bond strength = 10 +- 10 MPa

Clump logic
k,/ks =3.5 (uncemented) k ,/ks= 1 (cemented)

1 2

NARMS 2000

3 4 5 6 7
Axial Strain [milliStrain]

Looked good....
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Time dependent deformation

In Discrete Particle Modelling

6 Creep is implemented to mimick stress-induced corrosion by
reducing the parallel bond extent depending on the stress level
relative to bond strength at each contact

Creep (PFC2D - stress corrosion model)

T ] The model captures the

* three commonly observed
phases of transient,

| secondary creep S secondary and accelerating

/} ]| e (tertiary) creep

2 a 6 g 10 12 presented by Potyondy (2005)
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Time dependent deformation
In Discrete Particle Modelling
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1.E+02 \ Darley Dale sst
experiments

Time to failure [s]

1.E+00 1 1 1 1 1 =
30 40 50 60 70 80 IR (from Meredith,

NYRocks 1997)

% of short term strength

6 Long-term behaviour may be assessed from short-term simulations
6 Challenge: Appropriate calibration of microscopic creep parameters
6 Other physical mechanisms may play a vital role over long time scales

SINTEF ®NTNU



Axial creep [mStrain]

Application example:
Creep under K, conditions

KO creep
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Concluding Remarks

@ Time dependent compaction may be intrinsic (creep,
consolidation; within reservoir & overburden) or apparent
(stress arching induced, due to onset of plasticity)

@ Rocks deform elasto-plastically — both in the Earth and in the
Laboratory
(@ Rock alteration due to stress relief during coring is well and

understood, and models for correction of core measured compaction
exist

@ Plastic strain evolves as failure is approached, and with it:
Viscoplastic strain

@ Long term effects may be modelled, but require proper understanding
of mechanisms (hard to speed up...)

SINTEF ®NTNU
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