2nd Technical Meeting Steering Committee Long-term Subsidence Wadden Sea

Monday 28 and Tuesday 29 October Waddenacademie, Leeuwarden

1

What's the problem?

Subsidence in time

- Wanted: reliable basis go/no go, damage control decisions
- Prognosis not fit for purpose
- Measured versus predicted
 - spatial: steeper & deeper
 - volume: far smaller
 - temporal: later
 - continues after end production
 - no rebound on injection
- Effectiveness 'Hand on the Tap' control mechanism?
- Shelf life predictions?
- Note: long wavelength discrepancies, regardless of detail

What's the cause?

- without strict problem analysis > wasteful jumping to conclusions
 - processes needing validation
 - geomechanics: from production to subsidence
 - geodesy: from measurements to subsidence
 - testing: predicted versus measured subsidence
- inversion and misconceived geodetic data
 - distorted cause and effect experiences
 - blurred distinctions between good & bad models

Geomechanics

- Poorly covered links in chain from production to subsidence volume
 - pore pressure decrease > matrix pressure increase
 - increased fault friction, arching, jerky compaction vs earthquakes
 - stress equalisation > reservoir, over-, underburden deformation
 - document NAM's FEM implementation,
 - validate Geertsma experimentally, incl. horizontal deformation
 - reservoir, over- & underburden deformation > subsidence
 - subsidence outside range = depth may differs by factor 12
- Subsidence volume per m³ production
 - can differ by factor 10 depending on prognosis methodology
 - case analysis to extract lessons

Spatial distributions

Ir. A.P.E.M. Houtenbos

Percentage subsidence within given range

- Model choice: spatial distribution
- Comparing subsidence for same nucleus volume loss
- Subsidence volume may be 100 or 150% compaction
- Subsidence percentage outside range=depth varies by factor 13

5

• i.e. life/death Wadden banks

Time variant bowl shapes

The

Geodesy

- Geodetic data suffer from misconceptions, not temporal noise
- The observables are spatial height differences, not heights
- Height differences between benchmarks, not 'the surface'
- These benchmarks move with temporally correlated, but spatially uncorrelated speed w.r.t. the subsiding surface: temporal noise can't explain assumed, but not measured, spatially correlated bowl deepening
- Deformation is measurable, absolute subsidence is not
- Subsidence analysis is hampered by poor use of the spatial and temporal correlation in the deformation signal, not by poor spatial and temporal sampling

Relative benchmark stability

- Benchmarks set at logarithmically decreasing rates into surface
- Setting rates
 - not defined outside benchmarks. but continuous in time
 - rates of different benchmarks over same period uncorrelated
 - rate of same benchmark over different periods highly correlated
 - no time difference, no setting
 - different kind of benchmarks move the same, no bimodal distribution
 - ≈95% between +/- 0.5 mm/yr
- Conditional constraints address setting differences only
- Absolute displacement is irrelevant

8

Subsidence versus deformation

Subsidence: not measurable $z_i^{tu} = E\{h_i^u - h_i^t\}$ $D\{h_i^u - h_i^t\} = (2\sigma_h^2 + 2\sigma_t^2(u-t)^2).I$ Test: $(z_i^{tu} - (h_i^u - h_i^t))^T Q_{\Delta h}^{-1}(z_i^{tu} - (h_i^u - h_i^t)) = n$

Testing subsidence 10 Subsidence [mm] -10 -20 -30 -40 ccept -50 7000 -8000 -3000 2000 Distance to deepest point [m] Model Measured ±3 sd

2-12-2013

Deformation: measurable

 $\begin{aligned} z_{ij}^{tu} &= E\{h_{ij}^{u} - h_{ij}^{t}\} - E\{s_{j}^{tu} - s_{i}^{tu}\} \\ D\{h_{ij}^{u} - h_{ij}^{t}\} &= AQ_{dh}A^{T}; D\{s_{j}^{tu} - s_{i}^{tu}\} = BQ_{s}B^{T} \\ Test: & \left(z_{ij}^{tu} - \left(h_{ij}^{u} - h_{ij}^{t}\right)\right)^{T}. \\ & . (AQ_{dh}A^{T} + BQ_{s}B^{T})^{-1}.\left(z_{ij}^{tu} - \left(h_{ij}^{u} - h_{ij}^{t}\right)\right) = b \end{aligned}$

Hypotheses versus distinctive experience

- Alternative hypothesis: Artifact of geodetic data sparsity and salt flow
 - Salt flow known to cause
 - deepening of subsidence in the centre (where geodetic SNR is high)
 - and shallowing at the edges (where geodetic SNR is low).
- Comments:
 - point subsidence not measurable, hence no SNR
 - only height difference between centre and edges measurable
 - data supports deepening in the centre rather than shallowing?
 - is phenomenon present with, absent without salt cover?

Steering whish list

- In situ compaction versus earthquakes
- Description of NAM's FEM
- Moddergat/Nes prognoses on SC website
- Experimental validation of Geertsma
- GPS survey of horizontal deformation
- Drop sparse geodetic data/salt flow hypothesis
- Support for Geertsma's neglected gravity effects, RTCM and slow aquifer depletion