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The simplicity of complex patterns 

It is amazing how simple things in life can create immense complexity. With a few 

simple rules, complex patterns can arise from the interactions between individuals. 

When I was in Japan, I visited the world’s most crowded crossing in Shibuya, Tokyo 

(Fig. 1.1A). Although it seemed impossible to cross the street in such a vast mass of 

people, I actually found it quite effortless to make it to the other side of the road. 

Looking back, I remember making a few simple decisions. I tried to find my way 

using a path of least resistance, which meant that I avoided collisions with fellow 

crossers and followed anyone walking before me that was going in the same 

direction as I was trying to go. After crossing the street, I climbed the stairs of one 

of the tall buildings right next to the crossing for a bird’s eye view of the scramble 

that was taking place down below. At first I saw a complex mixture of pedestrians, 

but when I looked closer I could see patterns emerging during the crossover 

activity. I noticed that most people were using the same simple rules as I had 

earlier, and thereby they formed these large strings interlacing at the crossroad 

(Fig. 1.1B). Simply by crossing the street at a crowded location, we can see spatial 

patterns emerging from the straightforward actions of and interactions between 

individuals. 

 

 The most fascinating thing about the interactions responsible for the 

emergence of spatial patterns is how the success of one individual within the 

pattern depends on the actions of others. Just imagine that you are crossing a busy 

street, where cars turn into blazing menaces that will run you over once their light 

turns green. If you would be the sole pedestrian crossing this busy street, you 

simply cross at the sight of your green light and you will reach the other side in 

plenty of time. However, the situation becomes more complicated when the 

intersection is full of pedestrians. Those who are crossing in the same direction as 

you won’t much affect your chances of reaching the other side in time, but the 

people traversing in the opposite direction might hamper your cross-over. The 

spatial pattern that is generated will affect the probability that you run into fellow 

crossers, and hence influences the ability of individuals to safely cross the street. 

Thus, spatial patterns that emerge from interactions between individuals will affect 

survival and fitness, and may thereby influence evolutionary processes.  
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Figure 1.1: Although the street-crossing behavior at Shibuya crossing, Tokyo, appears a pedestrian’s 
pandemonium (A), spatial patterns emerge when we separate the people that are going in opposite 
directions (B), using a different color for those who are crossing to this side of the street (in blue) than 
for the those who are walking in the other direction (in yellow).   
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 Surprisingly, evolutionary processes have seldom been investigated in 

studies on self-organized pattern formation (but see Hogeweg & Takeuchi, 2003; 

Kéfi et al., 2008; Xavier et al., 2009). Yet, a feedback between pattern formation and 

evolutionary adaptation of the pattern-generating traits likely exists. For instance, 

picture a fish population trying to arrive at their spawning grounds safely. Because 

individuals that try to stay close to conspecifics decrease their risk of being 

predated, more of these fish have a chance to reproduce than those who swim 

freely (Partridge 1982; Partridge et al., 1983; Parrish et al., 2002; Hemelrijk & 

Hildenbrandt, 2012). If schooling behavior is a heritable trait, the frequency of fish 

that school will be higher in the next generation, which generates a larger school 

and hence decreases predation risk even further for those fish that school together. 

This process repeats itself: schooling behavior again becomes more frequent in the 

next generation, producing an even larger, safer school, and so on. Here, the 

pattern-generating behavior – schooling – creates a spatial structure which 

influences the survival success of these individuals, thereby altering the pattern-

generating behavior of the individuals in the next generation and, in turn, the 

emergent spatial structure. I believe that this feedback between ecology and 

evolution is of great importance for understanding both species traits and 

ecosystem functioning in natural systems with self-organized patterns. 

 

 The feedbacks between ecological pattern formation and evolutionary 

adaptation of self-organizing traits are not only of importance for street-crossing 

behavior or schooling of fish, but may also be vital in the wide prevalence of self-

organized complexity throughout nature (Fig. 1.2). For instance, regular spatial 

patterns can emerge from individuals’ self-organizing traits, such as movement, 

cooperation, and facilitation, in ecosystems as diverse as ribbon forests (Fig. 1.2C), 

coral reefs (Fig. 1.2D), arid bush lands, tidal wetlands, peat lands, and mussel beds 

(Klausmeier, 1999; Mistr & Bercovici, 2003; Rietkerk et al., 2004a; Rietkerk et al., 

2004b; Van de Koppel et al., 2005; Van de Koppel & Crain, 2006; Van de Koppel et 

al., 2008; Eppinga et al., 2009). In arid bush lands, for example, plants locally 

ameliorate their environment, which facilitates the settlement and survival of 

seedlings and thereby gives rise to spatially clustered patches of vegetation 

(Klausmeier, 1999). Another example  involves  mussels actively  aggregating  into  
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Figure 1.2: Self-organized spatial patterns are frequently observed in natural systems. For instance, 
spatial patterns arise in (A) bird flocks, (B) fish schools, (C) ribbon forests, and (D) coral reefs. 
 

labyrinth-like patterns, which simultaneously  decreases  dislodgement risk  and 

food competition (Van de Koppel et al., 2008). The shared key feature in all self-

organized systems is that structures larger than the organism develop from the 

local interactions between individuals, without any underlying templates or 

superior control. By means of self-organized pattern formation, organisms can 

strongly influence the ecosystem, thereby affecting environmental conditions as 

well, which in turn feeds back on the organisms’ fitness. Although the ecology of 

self-organized pattern formation has been researched for a wide range of 

ecosystems, feedback between ecology and evolution has seldom been considered 

in these ecosystems (but see Kéfi et al., 2008).  

 

 The apparent shortage of knowledge on eco-evolutionary feedbacks in self-

organized ecosystems created a great opportunity for me to investigate this subject 

in my dissertation. In the past seven years, I have examined many aspects of self-

organized patterning in young mussel beds, using both ecological experiments and 

eco-evolutionary models. With mussel beds as a model system, I will use the next 

five chapters to explore the dynamics and importance of eco-evolutionary 
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feedbacks in self-organized ecosystems. In the remainder of this introduction, I give 

more detail on self-organized pattern formation in mussel beds and the main traits 

responsible for self-organization in ecosystems – movement and cooperation.  

 

Making the bed 

Most of the work that I present in this thesis stems from mesocosm experiments, 

field experiments, and individual-based models that all involve mussel beds as a 

model system. These allow me to study the interaction between self-organization 

and evolutionary adaptation in spatially patterned ecosystems. When thinking 

about large-scale regular patterns in ecosystems, a mussel bed might not be the 

first habitat that comes to mind. Yet, mussel beds are an ideal system for studying 

self-organized complexity, as I will explain in the following paragraphs.  

 

First, mussels actively move into a regular spatial pattern. Whereas self-

organizing plant species are only dispersed as seeds before they settle, young 

mussels make use of their one foot and drag themselves along the sediment in 

search of conspecifics (Maas Geesteranus, 1942). They search for the perfect 

compromise between food availability and safety. On the one hand, mussels need 

sufficient algae on which to grow and live, yet on the other hand, they ought to be 

safely attached to neighboring mussels to decrease wave stress and predation risk 

(Van de Koppel et al., 2005; Van de Koppel et al., 2008). Aggregating into labyrinth-

like patterns helps mussels to achieve this compromise and allows them to exist 

under conditions that would otherwise be lethal (Van de Koppel et al., 2008). The 

movement of mussels into regularly patterned beds is an exciting self-organizing 

trait, which considerably affects the ecosystem’s spatial structure.  

 

Second, mussels cooperate with neighboring conspecifics, without any 

familiarity between them. Studies on cooperation in other self-organized 

ecosystems show that short-range dispersal is a prerequisite for local facilitation to 

evolve (Kéfi et al., 2008). Whereas local dispersal is frequently regarded as a 

necessity for cooperation and facilitation, many cooperative organisms disperse 

over a wide range. Mussels, for example, settle down in a completely mixed mussel 

bed; yet they cooperate with others by attaching their byssus threads – a glue-like 

substance that can fasten two mussels together – to any random neighbor within 
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their well-mixed population. So far, the evolution of cooperation in spatially 

patterned populations with wide-ranging dispersal remains elusive, but mussel beds 

are a perfect model system to investigate this problem as well as its effect on self-

organized patterning. Furthermore, the combination of aggregative movement and 

between-mussel attachment lends itself to a novel study of feedback between self-

organization and the joint evolution of two traits (movement and cooperation).  

 

Third, one of the most useful features of mussels is the ease at which they 

provide data. A simple camera is sufficient to take snapshots of individual-level 

pattern formation at the scale of meters. Mussels are not too particular on where 

they create patterns; they will even produce strings in a bucket. Using a seawater-

filled tank and a webcam, we can follow mussel movement and pattern formation 

with little effort. Mussels create patterns within 8 hours, which is much faster than 

self-organization in most other ecosystems (for instance, self-organized pattern 

formation in arid systems takes decades; Barbier et al., 2008). Data on between-

mussel cooperation is also easily obtained using simple tools; the tweezers that are 

ideally suited for plucking eyebrows are also of great use when counting byssal 

attachments, nail polish does the trick when mussels are in need of individual 

identification, and cable ties are of good use for immobilizing mussels and 

preventing them from cooperating. Even the shape of a mussel – which is roughly 

oval – can be nicely approximated with circular individuals in agent-based models. 

In sum, the size and shape of the individuals and pattern, and the speed of pattern 

formation make mussel beds a great ecosystem to study the feedback between 

spatial pattern formation and the evolution of self-organizing traits.   

 

A movement to aggregate 

Active movement is frequently used by mobile organisms to aggregate with nearby 

conspecifics. For instance, birds fly into flocks of all shapes and sizes, fish swim 

close to each other to create dense schools, cockroaches move into aggregations, 

and ants carry their dead around and stock them onto massive ant piles (Theraulaz 

et al., 2003; Jeanson et al., 2005; Hemelrijk & Hildenbrandt, 2012). Similar to the 

strolling of pedestrians at a crowded crossing (Moussaïd et al., 2009), the movement 

patterns of these aggregating animals also shape their large-scale spatial 

distribution and influence the organisms’ efficiency and fitness. An individual can 
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improve its survival chances by adopting a movement strategy that allows it to 

move more rapidly to its preferred location. For example, being able to reach a 

group faster decreases predation risk, as aggregations provide cover, increase 

vigilance and information spreading, and can create a dilution effect (Treherne & 

Foster, 1981; Krause, 1994; Parrish & Edelstein-Keshet, 1999). Similar to the fish 

schooling example, the more effective movement types become increasingly 

frequent in the population and promote the generation of self-organized patterns.  

 

 The ability to aggregate into a patterned population initially requires that 

organisms are capable of finding each other. In the simplest case, conspecifics are 

within reach or viewing distance, which allows individuals to move in a straight 

line to join a neighbor and the crowd (as most natural populations are patchily 

distributed). However, finding others is far more complicated when the individual 

does not have any information about their neighbors’ whereabouts. In this case, 

straight-line movement might not be efficient, since the individual may as well 

move in the wrong direction and miss the opportunity to turn and set another 

course. In this case, it might be advantageous to make random turns once in a 

while, allowing the individual to search in a closer range to its previous location. 

This arbitrary movement into random directions is what constitutes a random 

search strategy, where random steps and turning angles that are both drawn from 

particular frequency distributions can increase ones search efficiency when 

information about the environment is insufficient (Viswanathan et al., 2000).  

 

 The classic example of such random movement is the Brownian walk, 

where the steps between random turns are of approximately the same length. 

Oddly enough, the main theory on Brownian motion finds its origin in the 

movement of pollen grains under a microscope. When Robert Brown struggled to 

examine pollen seeds in a petri dish, he initiated his investigation of the 

movements that impeded his original research. He discovered that these pollen 

grains randomly move around, with move lengths drawn from an exponential 

frequency distribution (Brown, 1828). Later on, Albert Einstein recommenced 

research on Brownian motion and mathematically explained how colliding water 

particles actively changed the position of pollen grains. Using his study on 

Brownian motion, Einstein demonstrated that these collisions could describe the 



15 
 

diffusion of dissolved particles (Einstein, 1905; Langevin, 1908). Following the wide 

applicability of diffusion in physics, movement patterns resembling Brownian 

motion were detected in the movement trajectories of many animal species. As 

Brownian motion is presumed to be an adequate, simple model, it has become the 

default template for describing animal movement (Skellam, 1951; Turchin, 1998; 

Okubo & Levin, 2002).  

 

 Recently, another random movement strategy – the Lévy walk – has been 

frequently observed in nature (Shlesinger & Klafter, 1986; Viswanathan et al., 1996; 

Ramos-Fernandez et al., 2004; De Knegt et al., 2007; Sims et al., 2008). A Lévy walk 

is a scale-free movement strategy that encompasses a long-tailed step length 

distribution, i.e. large steps occur more frequently than expected from Brownian 

movement (Clauset et al., 2009). This movement strategy was named after Paul 

Pierre Lévy, a French mathematician who is famous for his discovery of the Lévy 

distribution (Mandelbrot, 1982). Lévy walks have been observed in myriad 

terrestrial and marine species, including ants, albatrosses, spider monkeys, goats, 

and marine predators (Shlesinger & Klafter, 1986; Viswanathan et al., 1996; Ramos-

Fernandez et al., 2004; De Knegt et al., 2007; Sims et al., 2008).  

 

Some random movement strategies exceed others in their effectiveness for 

finding resources, such as food, shelter, or mates; however, some may require 

greater intellect. Imagine searching for Easter eggs in a large field. When Easter 

eggs are scarce and difficult to find in the high grass, you must put effort into 

searching if you wish to indulge yourself with chocolate. There are a number of 

strategies you could follow. First, you could systematically search the field by 

browsing one row of grass after the other (Fig. 1.3A). Although this strategy will 

guarantee success, it does require that you remember exactly where you have been 

before and is therefore the most intellect-demanding strategy (Viswanathan et al., 

2011). A second strategy would be to start off in one direction and switch to a local 

search when you encounter an egg (the Easter bunny is likely to drop eggs in 

clusters, as is often the case with food items; Fig. 1.3B; Benhamou, 2007). After not 

finding anything for some time, you again switch to straight line movement until 

the next egg is found. Because this strategy requires an active shift between two 

random search modes, it is quite complex (Reynolds, 2008). A third strategy looks 
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fairly complicated; yet is the simplest of all. You move in one random direction for 

some time, then turn in another random direction and make a couple of steps, and 

so on (Fig. 1.3C). The trick here is to pick your step lengths from a power law 

frequency distribution, which is a step length distribution with a heavy tail that 

ensures you to make many small steps that are occasionally alternated by very 

long moves (in other words, a Lévy walk; Viswanathan et al., 1999). The upside of 

this strategy is that you do not need to remember where you have been before, or 

how long it has been since you have encountered anything. However, for many 

ecologists, the strategy appears too simple (Benhamou, 2007; Jansen et al., 2012).   

 

As all search strategies have benefits and downsides, which movement 

strategy is most efficient under particular circumstances is much debated (James et 

al., 2011; Jansen et al., 2012). Especially in the case where organisms are searching 

in heterogeneous, patchy environments where food, shelter, or mates are scarce, 

ecologists tend to be divided in two opposing parties (Benhamou, 2007; Reynolds, 

2008; Jansen et al., 2012). Some ecologists consider Lévy walks to be most efficient 

and therefore most prominent in patchy environments (Viswanathan et al., 1999; 

Bartumeus et al, 2002; de Jager et al., 2011; de Jager et al., 2014). Theoretical 

studies on search efficiency demonstrate that Lévy movement outcompetes simple 

Brownian movement in heterogeneous, patchy environments (Viswanathan et al., 

1996). Opposing this group are those who believe that organisms actively switch 

between two or more search modes using a Composite Brownian walk (Benhamou, 

2007; Jansen et al., 2012). A Composite Brownian walk comprises multiple 

Brownian walks with different mean step lengths into one movement strategy. 

Observed movement patterns that deviate from simple Brownian motion are often 

treated as either being the consequence of an interaction between Brownian 

movement and ecological encounters (Hastings et al., 2005), or as multiple 

Brownian walks combined in a Composite Brownian walk (Benhamou, 2007; Jansen 

et al., 2012). Although composite Brownian walks were found to give a better 

representation of movement patterns observed in nature than simple Lévy walks 

(Jansen et al., 2012; De Jager et al., 2012b), switching between multiple movement 

modes adds an extra level of complexity to the behavior. Presently, the debate 

continues. 
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Figure 1.3: Three different methods to search for resources (such as Easter eggs). (A) Strategically 
browsing the area enables you to find all the Easter eggs; yet, it is also the most memory-demanding 
strategy. (B) Alternatively, one could switch between straight line movement until an egg is found and a 
local search at the site of the discovered egg. (C) A strategy that does not make use of your memory is to 
randomly draw step lengths from a certain step length frequency distribution. In between the steps, 
turns into random directions are made. 
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Optimizing ones random search strategy is not just a matter of finding the 

most efficient strategy to use in a certain environment, but also involves how this 

movement strategy in turn affects the environment. Whenever the environment 

affects an organism’s behavior, the altered behavior can in turn influence that of 

others. Take for instance my example of the busy crossing. If one person moves a 

little to the left during his cross-over because he cannot move forward, others 

might have to adjust their walking direction to prevent a collision with this left-

going individual. Certain movement strategies used by street-crossing pedestrians 

or other moving organisms can become less efficient due to the response of 

adjacent individuals on their crowded environment. Especially in self-organized 

systems, the movement of one individual affects the efficiency of the search 

strategy of others. As most of these interactions have not been considered in 

previous research, much remains unknown about the functioning of different 

movement strategies during self-organization. Furthermore, evolution of these 

movement strategies has been disregarded in earlier studies and, moreover, eco-

evolutionary feedback with respect to movement strategies remains unstudied. 

Especially in self-organized ecosystems, the movement strategy used by individuals 

may have large implications for the development of the spatial population 

structure. As the emergent structure in turn affects the selection pressures for the 

individual organisms, evolutionary adaptation of movement behavior to self-

generated conditions is expected to occur. In Chapter 2 of this thesis, I investigate 

how Lévy walk movement strategies can evolve from the feedback between mussel 

movement and self-organized mussel bed formation.  

 

An active response to environmental cues is not necessary for a change in 

an organism’s movement pattern. For example, an intended step can be 

prematurely stopped because the organism can go no further due to a physical 

obstruction. In natural systems, organisms can interact with one another by 

consuming resources, predating each other, or simply encountering one another. 

These interactions can change an intended search strategy and generate a 

completely new movement pattern. A number of empirical studies have observed 

how the movement pattern of microzoöplankton, goats, marine predators, and 

albatrosses changed from Lévy-like movement in resource-poor environments to 

Brownian motion in denser locations (Bartumeus et al., 2003; De Knegt et al., 2007; 
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Humphries et al., 2010; Humphries et al., 2012). When we recall how Einstein 

(1905) demonstrated that Brownian motion of dissolved particles was caused by 

collisions between these particles and water molecules, we can easily imagine that 

observed Brownian patterns in the movement of organisms might also be the result 

of ecological ‘collisions’. Until now, however, it is often hypothesized that the 

observed switch from Lévy-like to Brownian movement is an active response of an 

animal to changes in resource availability, because an active switch between Lévy 

and Brownian movement is assumed to increase the animal’s search efficiency. In 

Chapter 3 of my thesis, I experimentally demonstrate that observed Brownian 

movement patterns in dense mussel beds are the consequence of the interaction 

between an intrinsic Lévy walk and frequent collisions with neighboring 

conspecifics. I prove this principle with a simple argument and further show that 

actively switching between Lévy and Brownian motion does not improve one’s 

ability to locate resources.  

 

To settle the debate on whether organisms are using a Lévy walk or a 

Composite Brownian walk, I have been exploring ways to distinguish between these 

two movement strategies. I figured that environmental cues, such as the presence 

of food or other resources, might trigger the switch from one movement mode to 

another in a Composite Brownian walk. As resources are often patchily distributed, 

an efficient Composite Brownian walk would consist of a local search in the 

presence of resources and a straight-line leap between food patches. Lévy walks are 

not controlled by switches induced by environmental cues but are always fully 

random, despite the presence or absence of resources. Hence, one can imagine that 

with Lévy-like movement patterns, clusters of small steps are not only found near 

food patches but also in free space. In contrast, clusters of steps should be 

associated with resource distributions in Composite Brownian walks. We use this 

idea to investigate whether mud snails (Hydrobia ulvae) are making use of Lévy-

like movement or a Composite Brownian walk, by examining clusters of steps on 

and off food patches in Chapter 4 of this thesis.  

 

Patterns of Cooperation 

A crucial component of many forms of self-organization in ecosystems is local 

positive feedback, which is often generated by facilitative or cooperative 
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interactions between organisms. Moving into a self-organized pattern would be 

pointless if aggregation did not help you in any way. For instance, if mussels are 

not attached to their neighbors within the pattern, they risk becoming dislodged by 

wave action or predation (Hunt & Scheibling, 2001; Zardi et al., 2006). Hence, 

creating a pattern without profiting from some sort of cooperation that the pattern 

offers is not advantageous. Both cooperation, where one individual helps another at 

its own expense, and facilitation, where the benefit to others is an accidental 

byproduct, aid in ameliorating the environment locally. In numerous species, 

cooperation between individuals is a common process; yet, understanding how 

cooperation has evolved remains a major challenge. For instance, I have seen 

young elephants helping one another by giving a little push on a climb up a steep 

slope, leaving the assisting youngster vulnerable on the dry river bed. Why did this 

elephant help the other? Assisting another might come at a great cost, and it 

remains uncertain whether the other will do anything in return. Evolutionarily 

speaking, cooperation can only evolve when cooperating individuals gain a fitness 

advantage over uncooperative conspecifics; therefore, cooperators should in the 

end benefit from their own generosity.  

  

There is a Dutch saying that comes to mind when thinking of cooperation 

in spatially heterogeneous systems: ‘better to have a good neighbor than a far 

friend’. This saying is quite true; since you will interact more frequently with those 

nearby than with distant individuals. Regularly cooperating with ‘good neighbors’ 

will be more profitable than the rare cooperation with a faraway friend. Without 

spatial segregation of cooperative interactions, everyone will randomly interact 

with each other, and this has been shown to result in the demise of cooperation in 

the first models of evolutionary game theory (Maynard-Smith, 1982; Axelrod, 

1984). However, when individuals are placed within a spatial structure, cooperate 

only with close neighbors, and locally disperse their offspring, cooperation is able 

to evolve (Nowak & May, 1992; Skyrms & Pemantle, 2000; Ishibuchi & Namikawa, 

2005; Kun et al., 2006; Langer et al., 2008; Szamado et al., 2008). In these models of 

cooperation, staying close to related individuals increases ones chance that its 

relatives will assist it, provided that cooperation has a genetic basis. Furthermore, 

helping family members indirectly benefits an individual’s fitness, as they share 

some of that individual’s genes (Hamilton, 1963). This inclusive fitness concept is 



21 
 

habitually regarded as an essential and sufficient explanation for the evolution of 

cooperation.   

  

Until now, research on the evolution of cooperation in spatially complex 

populations has overlooked at least two issues. First, many cooperative species 

disperse over a wide range and are therefore not interacting more frequently with 

relatives than with unrelated conspecifics. For example, various marine 

invertebrates that later in life interact with sessile neighbors have a suspended 

larval stage – where they can drift over large distances – before settling on a 

surface (Godfrey & Kerr, 2009). In most studies, the positive effect of spatial 

structure on the evolution of cooperation is attributable to the increased chance of 

cooperating with relatives; how this process works in populations with wide-

ranging dispersal remains elusive. In Chapter 5 of this thesis, I investigate the 

effect of spatial patterning on the evolution of between-mussel attachment in self-

organized mussel beds, where mussels settle down in regular spatial patterns after 

being suspended during their larval stage.  

  

The second neglected issue is that spatial structure can itself result from 

cooperation between organisms. For example, without the between-mussel 

cooperation of attaching byssus threads to neighbors, spatial patterns in mussel 

beds have little chance to persist. Moreover, the spatial structure that is generated 

by organisms and their interactions can lead to the formation of groups. When the 

ability to achieve a collective goal differs between these groups, group-level 

selection can occur (Van Boven & Weissing, 1999; Traulson & Nowak, 2006; 

Thompson 2000; Kohn, 2008; Burton et al., 2012; Molleman et al., 2013). For 

instance, picture a group of people in a rowing boat. To get across the sea and 

safely to land, one needs to cooperate with boat members. Whether the boat will 

return safely from the voyage depends on the paddling efforts of everyone on 

board. Hence, a group-level survival process is taking place; either everyone will 

return or nobody at all. At the same time, individual-level fitness differences 

between the boat members can arise when some people are putting more effort in 

rowing than others. Someone who rows too enthusiastically might die of a heart 

attack and thereby is eliminated by an individual-level selection process. By 

contrast, groups of lazy boatmen that all perish from hunger and thirst are killed 
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by a group-level selection process. When taken together, the group-level and 

individual-level processes will combine as multilevel selection (Wilson & Sober, 

1994; Sober & Wilson, 1998; Thompson, 2000; Okasha, 2006; Wilson & Wilson, 

2007; West et al., 2008), where an individual’s fitness depends on the paddling skills 

and efforts of the group and on that individual’s own investment in rowing the 

boat. Hence, with the emergence of self-organized structures from the actions of 

and interactions between individuals, an additional level of selection may arise next 

to simple individual-level selection.  

  

Self-organized ecosystems are likely to be influenced by multilevel 

selection. The additional level of selection that emerges from self-organization can 

create a feedback between pattern formation and the evolution of self-organizing 

traits. Yet, how multilevel selection affects the evolution of cooperation and 

thereby influences spatial pattern formation in self-organized ecosystems remains 

unknown. In Chapter 6 of this thesis, I investigate the effect of multilevel selection 

on the joint evolution of aggregative movement and between-mussel cooperation 

in self-organized mussel beds. Subsequently, I examine how the feedback between 

multilevel selection and mussel bed formation will influence the development of 

spatial patterns in mussel populations.  

 

 The conclusions drawn from the studies considered in Chapters 2 to 6 are 

summarized in the General Discussion. In this final chapter, I discuss how the 

results of my research on animal movement, between-mussel cooperation, eco-

evolutionary processes, and emergent spatial complexity can change our 

perspective on self-organized ecosystems. Specifically, I highlight the importance 

of investigating eco-evolutionary feedbacks within these systems, which is 

necessary for drawing reliable conclusions from models as well as from 

observations of natural processes.      
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2 
Lévy walks evolve through interaction between 

movement and environmental complexity 
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Abstract 

Ecological theory predicts that animal movement is shaped by its efficiency of 

resource acquisition. Focusing solely on efficiency, however, ignores that animal 

activity can impact resource availability and distribution. Here, we show that 

feedback between individual behavior and environmental complexity can explain 

movement strategies in mussels. Specifically, experiments show that mussels use a 

Lévy walk during the formation of spatially patterned beds and models reveal that 

this Lévy movement accelerates pattern formation. The emergent patterning in 

mussel beds, in turn, improves individual fitness. These results suggest that Lévy 

walks evolved due to the selective advantage conferred by autonomously 

generated, emergent, spatial patterns in mussel beds. Our results emphasize that an 

interaction between individual selection and habitat complexity shapes animal 

movement in natural systems. 
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Introduction 

Animals must face the daunting complexity of the natural world when searching 

for food, shelter and other resources crucial for survival. To cope with the 

challenge to maximize the probability of resource encounters, many organisms 

adopt specialized search strategies (Bartumeus et al., 2005; Sims et al., 2008) that 

can be described by random walks. Brownian and Lévy walks are prominent 

examples of random walk strategies where both the direction and step length of the 

constituent moves are drawn from a probability distribution (Viswanathan et al., 

2000; Bartumeus et al., 2005; Sims et al., 2008; Bartumeus, 2009). These movement 

patterns differ in the distribution of step lengths, which are derived from an 

exponential distribution in the case of Brownian motion, but follow a power-law 

distribution in case of Lévy motion (See Appendix; Viswanathan et al., 2000; 

Codling et al., 2008; Viswanathan, 2010), where many short steps are occasionally 

alternated with a long step. Model simulations have shown that a Lévy walk 

provides faster dispersal (Bartumeus et al., 2005; Bartumeus, 2009), more newly 

visited sites (Bartumeus et al., 2005; Sims et al., 2008), and less intra-specific 

competition than Brownian walks (Viswanathan et al., 2000); it is therefore 

considered the most efficient random search strategy in resource-limited 

environments where food occurs patchily at locations unknown to the searcher 

(Bartumeus et al., 2005; Sims et al., 2008; Bartumeus, 2009) and, most importantly, 

where the resource distribution is largely unaffected by the activities of the 

searching animal (Viswanathan et al., 1999; Reynolds & Bartumeus, 2009). 

Although shown to be optimal for only these specific conditions, Lévy walks are 

broadly found in nature (Ramos-Fernandez et al., 2004; Reynolds et al., 2007; Sims 

et al., 2008; Humphries et al., 2010), suggesting that they are actually adaptive over 

a wider range of conditions. We hypothesize that this wide occurrence is due to the 

fact that organisms themselves affect the availability and spatial distribution of the 

resources upon which they depend (Jones et al., 1994). Consequently, the 

movement strategies of organisms can shape the environment. 

 

 On intertidal flats, the distribution of regularly-spaced clumps of mussels 

(Mytilus edulis) results from the interaction between local mussel density and the 

crawling movement of young mussels (See Appendix; Maas Geesteranus, 1942; 

Van de Koppel et al., 2008). In particular, pattern formation in mussel beds is 
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attributable to two opposing mechanisms: cooperation and competition (Van de 

Koppel et al., 2005). Through movement into cooperative aggregations, mussels 

increase their local density, which decreases wave stress and predation risk. 

Conversely, competition for algae, which occurs on a larger spatial scale than 

facilitation, prevents the formation of larger clumps by limiting the number of 

mussels within a long range. The interaction of local facilitation and long-range 

competition results in the emergence of a patchy distribution of individuals, which 

simultaneously reduces risk and minimizes competition for algae (Van de Koppel 

et al., 2008). Hence, in this system, the distribution of suitable settling locations, an 

important resource for mussels, is determined by the existing distribution of 

mussels, which develops in response to the movement of its comprising 

individuals. Here, we investigate whether the interplay between movement strategy 

and habitat complexity results in the emergence of Lévy walks in these self-

organizing mussel beds. 

 

Methods & Results 

We first tested the hypothesis that mussel movement is described by a Lévy walk 

(or a truncated Lévy walk) against alternative models reported in the literature, 

namely a Brownian walk and a composite Brownian walk (Nolet & Mooij, 2002; 

Benhamou, 2007; Reynolds & Rhodes, 2009). We observed the movements of 50 

mussels during the process of pattern formation and of 12 mussels in solitary 

experiments in mesocosm tanks. Step lengths were estimated by the distance 

between two subsequent reorientation events (See Appendix). The resulting step 

length distribution was compared with the family of power-law distributions, P(l) = 

Cl-μ, where P(l) is the probability of a step of length l and C is a constant ensuring 

that the total probability equals one. The exponent μ defines the shape of the 

distribution and therefore determines the resulting movement strategy. If 1 < μ < 3, 

the movement pattern corresponds to a Lévy walk. When μ approaches 1, the 

movement is approximately ballistic, while it is approximately Brownian when μ 

approaches 3 (and for μ > 3) (See Appendix; Fig. 2.5; Bartumeus et al., 2005; 

Reynolds & Rhodes, 2009). The Lévy walks found in nature typically have an 

exponent μ of approximately 2 (Ramos-Fernandez et al., 2004; Reynolds et al., 2007; 

Sims et al., 2008; Humphries et al., 2010). 
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Figure 2.1: Experimental and model results showing that mussel movement, which is best described by a 
Lévy walk, generates patterns in mussel beds. (A)  Frequency distribution of step lengths of all solitary 
mussels (18 mussels, 15,764 steps). (B) Inverse cumulative frequency distribution of the step lengths. (C) 
Pattern formation in an experimental mussel bed. (D) Pattern generated with our individual based 
model.  
 

Our results show that mussels use a Lévy walk during the process of pattern 

formation. Based on maximum likelihood estimation and the derived Goodness-of-

fit (G), Akaike Information Criterion (AIC) and the fraction of variance explained 

by the model (R2), we found that Lévy walk and truncated Lévy walk distributions, 

both with μ ≈ 2, provided the best fit to the data over a range of at least 2 orders of 

magnitude (See Appendix, Table 2.1; Fig. 2.1; Table 2.2). A possible alternative 

explanation is that mussel movement follows a composite Brownian walk, where 

movement speeds are adjusted to local environmental conditions (Nolet & Mooij, 

2002; Benhamou, 2007; Reynolds, 2008; Benhamou, 2008; Reynolds & Rhodes, 

2009). Such a strategy can have a similar step length distribution as a Lévy walk 

and is therefore often overlooked. However, when mussel movements were 

grouped by local mussel density (the density of mussels within a radius of 3.3 cm)  
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Table 2.1: Summary of the model fits to the step length data. Here, we only used the ‘angle method’ to 
calculate the step lengths from the movement data. The maximum likelihood estimation (ML) and the 
subsequent weighed Akaike Information Criterion (wAIC) show that a truncated Lévy walk with μ = 1.9 
best (out of these three movement strategies) approximates the movement strategy of solitary mussels. 
 

Model ML wAIC Lévy exponent 

Truncated Lévy walk -165.9 1 1.9 

Lévy walk -3974.2 0 1.9 

Brownian walk -7238.0 0 - 

 

 
 

and long-range density (the density of mussels within a radius of 22.5 cm) 

categories, step length  distributions did  not  differ  between the density categories 

and mussels were found to perform a Lévy walk with μ ≈ 2, irrespective of the  local 

and  long- range density (See Appendix, Table 2.3). Hence, we reject the hypotheses 

of Brownian walk and composite Brownian walk and conclude that mussel 

movement is best described by a Lévy walk.  

 

To examine why mussels adopt a Lévy walk, we investigated the effect of 

movement strategy on the rate of pattern formation by designing an individual-

based model (See Appendix). In this model, patterns arise by the mussels’ decisions 

to stay at a location or move away from it. We used experimental data from a prior 

study to estimate the parameters of this stop-or-move behavior (See Appendix; Fig. 

2.5; Van de Koppel et al., 2008). Although step length distributions are unaffected 

by mussel density, we discovered that the probability that a mussel moves 

decreases with short-range density (the density of mussels within a radius of 3.3 

cm) and increases with long-range density (the density of mussels within a radius 

of 22.5 cm). Based on these parameters, simulated mussels stay in places where 

they can aggregate with direct neighbors, but move away from crowded locations 

where food becomes limiting. If a simulated mussel moves, the movement distance 

is randomly drawn from the power law distribution that corresponds to its 

movement strategy. For a range of movement strategies (1 < μ ≤ 3), we observed the 

distance travelled until a pattern has formed. Operationally, we say that a pattern 

has formed when the density  of  simulated  mussels  within  3.3  cm  distance  is on  
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Figure 2.2: The rate of pattern formation for various movement strategies. As we assume that movement 
speed is constant, we can calculate the rate of patterning as the normalized inverse of the distance 
traversed until a pattern is formed. A Lévy walk with exponent μ ≈ 2 minimizes the time needed to form a 
pattern. 
 

average 1.5 times as large as the density of mussels within 22.5 cm distance of an 

individual. Assuming that the movement speed is constant, the rate of pattern 

formation for each movement strategy is proportional to the inverse of the average 

distance traversed by the mussels until a pattern was formed (See Appendix).  

 

Simulations reveal that movement strategies differ strongly in terms of the 

rate at which they create patterns (Fig. 2.2). A Lévy walk with exponent μ ≈ 2 

generated a spatially heterogeneous pattern more rapidly than did either ballistic 

movement (μ → 1) or a Brownian walk (μ → 3). Specifically, the large steps 

associated with a small value of μ prevented quick formation of tight clusters, while 

a larger value of μ required many small steps to create clustering. A Lévy walk with 
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μ ≈ 2 seems to be the optimal trade-off between finding dispersed conspecifics and 

maintaining high local densities, thereby maximizing the rate of pattern 

development. Hence, our simulation results suggest that a Lévy strategy with μ ≈ 2 

is optimal for pattern formation.  

 

As pattern formation both improves mussel survival and decreases 

competition between mussels (Maas Geesteranus, 1942), the movement strategy of 

individual mussels is likely to be an important determinant of fitness. However, 

strategies that lead to a desirable outcome at the population level are often not 

evolutionarily stable, as they can be exploited by free-riding strategies (Reynolds & 

Rhodes, 2009).  To determine the long-term outcome of selection acting on mussels 

differing in strategy (i.e. their exponent μ) we created a pairwise invasibility plot 

(PIP, Fig. 2.3) by performing an evolutionary invasibility analysis (See Appendix; 

Geritz et al., 1998; Dercole & Rinaldi, 2008). The values along the x-axis of the PIP 

represent a broad range of hypothetical resident populations, each with a particular 

movement strategy characterized by an exponent μres. The y-axis represents the 

exponents μmut of potential mutant strategies. The colors indicate whether or not a 

mutant strategy μmut can successfully invade a resident strategy μres, i.e. whether or 

not mutant individuals have a higher fitness than resident individuals in the 

environment created by the resident population. Intersections between the lines 

separating the colored areas indicate the presence of an evolutionary attractor, thus 

predicting the outcome of selection on mussel movement strategies. Fitness was 

given by the product of mussel survival (which is proportional to short-range 

mussel density) and fecundity (which is inversely proportional to long-range 

mussel density and the energy invested in movement) (See Appendix). 

 

The PIP reveals that a Lévy walk with μ ≈ 2 is the unique evolutionary 

attractor of the system (Fig. 2.3; Geritz et al., 1998; Dercole & Rinaldi, 2008). 

Specifically, a succession of invasion events will lead to the establishment of a 

resident population with μ ≈ 2, and a resident population with μ ≈ 2 cannot be 

invaded by any other movement strategy. We conclude that the Lévy walk strategy 

observed in our experiments (Fig. 2.1) not only has a high patterning efficiency 

(Fig. 2.2) but is also an evolutionarily stable strategy (Fig. 2.3). 
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Figure 2.3: Pairwise invasibility plot (PIP) indicating that the movement strategy evolves towards a Lévy 
walk with μ ≈ 2. For a range of resident (x-axis) and mutant (y-axis) movement strategies, the PIP 
indicates whether a mutant has a higher (red) or a lower (green) fitness than the resident and, hence, 
whether or not a mutant can invade the resident population (Geritz et al., 1998). Here, the PIP shows that 
a Lévy walk with μ ≈ 2 is the sole evolutionarily stable strategy (ESS). 

 

Conclusion & Discussion 

Our study demonstrates an evolutionary feedback between individual movement 

behavior and higher level complexity, and it provides a possible explanation for the 

evolution of Lévy walks in mussel beds. Rather than being a direct adaptation to an 

externally determined environment, Lévy movement in our study was found to 

result from feedback between animal behavior and mussel-generated 

environmental complexity. In essence, a Lévy walk with μ ≈ 2 creates a spatial 

environment in which just this movement strategy can flourish.  
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Although our study addresses a specific system, the assumption that search 

strategies can evolve through feedback between animal movement and 

environmental heterogeneity may be broadly applicable. Such feedbacks may exist 

not only in the search for conspecifics (as seen here in mussels) but also in the 

search for resources shared with conspecifics, as resource patterns reflect the 

movement patterns of their consumers. This applies, for instance, to the interaction 

between herbivores and vegetation, which shapes grasslands globally (Adler et al., 

2001). Additionally, feedback between movement strategy and habitat complexity 

may arise when the spatial distribution of a particular species depends on 

interactions with a searching organism (as in predator-prey relationships or animal-

mediated seed dispersal [Boyer & Lopez-Corona, 2009]). We conclude that the 

interaction between animal movement and habitat complexity is a key component 

in understanding the evolution of animal movement strategies. 
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Appendix: Supplementary Materials & Methods 

1. Characteristics of mussel movement 

Although mussel movement becomes limited with increasing shell size, young 

mussels are good crawlers for many months after their metamorphosis (Maas 

Geesteranus, 1942). During this period, mussels are able to search for conspecifics 

and aggregate. Once arrived at a good quality location, with respect to the number 

of neighbors and food availability, a mussel stops moving and attaches itself to the 

bed. When conditions become less suitable, a young mussel can still detach itself 

and search for a better location. This movement and attachment behavior at 

individual level directly affects the habitat quality for others, thereby leading to 

spatial patterning in mussel beds. 

2. Extraction of mussel movement data 

Step lengths of young blue mussels (Mytilus edulis, 1.5-3 cm long) were obtained 

from experimental data of Van de Koppel et al. (2008). The blue mussels used in 

these experiments were obtained from wooden wave-breaker poles near Vlissingen, 

the Netherlands. Experiments were performed in a 120x80x8 cm containers filled 

with unfiltered seawater. Mussels were placed on a 60x80 cm red PVC sheet. To 

record mussel movement, a Logitech QuickCam 9000 Pro webcam, which was 

positioned about 60 cm above the water surface and attached to a computer, 

photographed the mussels at 1 minute intervals for several hours. In total, 68 

mussels were used for the experiments, resulting in 19,401 steps. Tracks of 18 of 

these mussels (15,764 steps) were obtained from isolation experiments, preventing 

the mussels from finding conspecifics and creating clusters. To investigate density-

dependence, the tracks of the other 50 mussels (7,000 steps) were obtained from 

pattern formation experiments (see Fig. 2.1B). In pattern formation experiments, 

mussels are initially evenly distributed over the red PVC sheet, after which the 

mussels start to move and create patterns. 

  

The first method that we used for the extraction of step lengths was to simply 

calculate the distance between two subsequent points using a 60 seconds interval. 

This time interval was  chosen since our  observations  revealed that time  intervals  
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Figure 2.4: Step length calculation using the ‘error radius method’ (A) and the ‘angle method’ (B). In the 

first method (A), n steps are aggregated into one move if the n-1 intermediate spatial positions are no more 

than x units away from the line connecting the b beginning of the step to the end of it. The second method 

(B) is based on reorientation events; when the angle β (between the dotted black line and the solid black 

line) exceeds a certain threshold value, the corresponding point is the next new point (after Turchin, 1998). 

between 40 and 80 seconds are most adequate for monitoring mussel movements 

in our experiments. 
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In addition, we extracted step length distributions by applying two step 

length extraction methods suggested by Turchin (1998). In the ‘error radius 

method’ (illustrated in Fig. 2.4a), the movements performed in n time intervals are 

aggregated into a single ‘step’ if the n-1 intermediate spatial positions are no more 

than a predefined distance x away from the line connecting the  beginning  of the 

movement  to  the end  of  it. When applying this method, the value of x was 

chosen by starting with a small value and then incrementing it iteratively until 

oversampling was minimized.  

 

Turchin’s ‘angle method’ (illustrated in Fig. 2.4b) concerns the angle 

between movements. The movements performed in n time intervals are 

aggregated into a single step if the angle between the starting position and the end 

position is smaller than a predefined value βmax. When this value is exceeded after 

the nth movement, the corresponding point becomes the starting point for the next 

step. The threshold value βmax was also chosen iteratively, starting with a small 

angle and gradually increasing it until oversampling was minimized (βmax = 30°).  

 

As the method used for estimating step lengths does not affect our 

conclusions, we chose to calculate the step lengths using the ‘angle method’. 

Without all steps smaller than the lower truncation boundary (0.2 mm), the step 

length data now contains 6996 data points. 

 

3. Fitting movement types to step length data 

 

The step length data of the mussel movements were used to create a step length 

frequency distribution (Fig. 2.1a). When plotted on a log-log scale, a power-law 

probability distribution P(l)=Cl-μ results in a straight line with slope –μ. However, 

drawing conclusions from this kind of presentation can be deceptive (Sims et al., 

2007; Edwards et al., 2007; White et al., 2008). We therefore used a more robust 

method (Edwards et al., 2007) and first determined the inverse cumulative 

frequency distribution of our data, which for each step length l gives the fraction of 

steps with lengths larger or equal to l. This cumulative distribution is plotted in Fig. 

2.1b on a log-log scale. We compared this distribution with the cumulative 

probability distribution of three random movement strategies: Brownian walk, Lévy 

walk, and truncated Lévy walk.  
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Figure 2.5: The Lévy exponent μ determines the shape of the step length distribution and thus the 

movement strategy. When μ is close to 1, the movement strategy resembles ballistic, straight-line motion 

(A, D), whereas the step length distribution is similar to that of a Brownian walk when μ approaches 3 (C, 

F). The movement strategy is referred to as a Lévy walk when 1 < μ < 3 (B, E). A, B, and C show movement 

trajectories obtained with μ = 1.01, 2, and 3, respectively. The inverse cumulative step length frequency 

distributions (i.e. the fraction of steps that is larger than or equal to the displacement length (l) that is given 

on the x-axis) are given by D, E, and F for μ = 1.01, 2, and 3, respectively. 

 

Brownian walk 

 

Brownian walk is a random movement strategy that corresponds to normal 

diffusion. The step length distribution can be derived from an exponential 

distribution with λ > 0:   

 

 𝑓(𝑙) =  𝜆𝑒−𝜆(𝑙−𝑙𝑚𝑖𝑛),      (2.1) 

 

where lmin is the lower truncation boundary (lmin = 0.2 mm). 
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Lévy walk 

 

The frequency distribution of step lengths that characterizes a Lévy walk has a 

heavy tail and is scale-free, i.e. the characteristic exponent of the distribution is 

independent of scale. To fit a Lévy walk to the data, a Pareto distribution (Clauset et 

al., 2009) was used: 

 

 𝑓(𝑙) =  𝐶𝜇𝑙−𝜇 .       (2.2) 

 

The shape parameter μ (which has to exceed 1) is known as the Lévy exponent or 

scaling exponent and determines the movement strategy (see Fig. 2.5). When μ is 

close to 1, the resulting movement strategy resembles ballistic, straight-line 

motion, as the probability to move a very large distance is equal to the chance of 

making a small displacement. A movement strategy is called a Lévy walk when the 

scaling exponent is between 1 and 3. When μ approaches 1, the movement is 

approximately ballistic, while it is approximately Brownian when μ approaches 3 

(and for μ > 3). The Lévy walks found in nature typically have an exponent μ of 

approximately 2 (Ramos-Fernandez et al., 2004; Reynolds et al., 2007; Sims et al., 

2007; Humphries et al., 2010). Cμ is a normalization constant ensuring that the 

distribution f(l) has a total mass equal to 1, i.e. that all values of f(l) sum up to 1. If 

we impose the additional criterion that steps must have a minimum length lmin (0 < 

lmin < l), this constant is given by 

 

 𝐶𝜇 = (𝜇 − 1)𝑙𝑚𝑖𝑛
𝜇−1

.      (2.3) 

 

When fitting our data to a Lévy walk, we used the value of lmin that provided the 

most accurate movement data (without the small-scale measuring errors; lmin = 0.2 

mm). 

 

Truncated Lévy walk 

 

A truncated Lévy walk differs from a standard Lévy walk in the tail section of the 

frequency distribution; a truncated Lévy walk has a maximum step size and, as a 

consequence, loses its infinite variance and scale-free character at large step sizes. 



38 
 

The truncated Lévy walk was represented by the truncated Pareto distribution, 

which can be described by the same function f(l) as a standard Pareto distribution, 

but with different constant Cμ: 

 

 𝐶𝜇 =  
𝜇− 1

𝑙
𝑚𝑖𝑛
1 − 𝜇

  −  𝑙𝑚𝑎𝑥
1 − 𝜇

 
.      (2.4) 

 

In a truncated Lévy walk, step lengths are constrained to the interval lmin < l <  lmax. 

When fitting our data to a truncated Lévy walk, we used those values of lmin that 

provided the most accurate movement data (without the small-scale measuring 

errors; lmin = 0.2 mm). We used the maximum step length as the upper truncation 

boundary (lmax). 

 

Goodness-of-fit and model selection 

 

For the frequency distributions mentioned above, the fit to the step length data of 

solitary mussels was calculated using Maximum Likelihood (ML) estimation: 

 

 𝑀𝐿𝐵𝑊 = 𝑛 ∙ log(𝜆) −  𝜆 ∙  ∑(𝑙 − 𝑙min),     (2.5) 

 

 𝑀𝐿𝐿𝑊 =  𝑛 ∙ log(𝜇 − 1) +  𝑛 ∙ (𝜇 − 1) ∙ log(𝑙𝑚𝑖𝑛) −  ∑ log (𝑙), (2.6) 

 

 𝑀𝐿𝑇𝐿𝑊 =  
𝑛

𝜇−1
+  

𝑛 ∙(
𝑙𝑚𝑖𝑛

𝑙𝑚𝑎𝑥
⁄ )𝜇−1 ∙log (

𝑙𝑚𝑖𝑛
𝑙𝑚𝑎𝑥

⁄ )

1 − (
𝑙𝑚𝑖𝑛

𝑙𝑚𝑎𝑥
⁄ )𝜇−1  

− ∑(log(𝑙) − log(𝑙𝑚𝑖𝑛)), (2.7) 

 

where n is the number of data points. Subsequently, we calculated the AIC: 

 

 𝐴𝐼𝐶𝑖 =  −2 ∙ 𝑀𝐿𝑖 + 2 ∙ 𝐾𝑖 ,     (2.8) 

 

where K is the number of parameters of model i. Using the AIC’s of the three 

movement strategies, we were able to calculate the weighed AIC (wAIC): 

 

 𝑤𝐴𝐼𝐶𝑖 =  
𝑒−0.5 ∙(𝐴𝐼𝐶𝑖− 𝐴𝐼𝐶𝑚𝑖𝑛)

∑ 𝑒−0.5 ∙(𝐴𝐼𝐶𝑖− 𝐴𝐼𝐶𝑚𝑖𝑛),      (2.9) 
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Table 2.2: Lévy exponent during pattern formation. The Lévy exponent (calculated with the ‘angle method’ 

step length data when n > 50) increases with local and long-range mussel density (df = 21, F = 15.46, r2 = 

0.557, p < 0.001). This increase in μ with mussel density may be accounted for by collisions with 

conspecifics, which cause truncation of steps.  
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where AICmin is the lowest AIC of the three movement strategies. The movement 

strategy with the highest weighed AIC provides the best fit to the mussel 

movement data (out of the three models). This method was used for the analysis of 

the movement strategies of the 12 solitary mussels (see Fig. 2.4). Additionally, step 

lengths obtained from pattern formation experiments were grouped for different 

combinations of local density (within a radius of 3.3 cm) and long-range density 

(within a radius of 22.5 cm). These groups of step lengths were used for 

determining the Lévy exponent at different densities, in order to observe whether a 

composite Brownian walk exists in mussel movement (see Table 2.2). 

 

4. Computer Simulations 

 

Individual based model  

 

We developed an individual based model that describes pattern formation in 

mussels by relating the chance of movement to the short- and long-range densities 

of mussels, following Van de Koppel et al. (2008). Whereas they modeled pattern 

formation in mussel beds by adjusting the movement speed to the short- and long-

range densities (Van de Koppel et al., 2008), we extracted the stop and move 

behavior of the mussels from the experimental data. In our model, 2500 ‘mussels’ 

(with a radius of 1.5 cm each) are initially spread homogeneously within a 150 cm 

by 150 cm arena. Each time step, the short-range (D1) and long-range (D2) densities 
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are determined for each individual, based on mussel densities within a radius of 3.3 

cm and 22.5 cm, respectively. These radii correspond to the ranges in which we 

found significant correlations with the probability of moving in a multi-variate 

regression analysis of our experimental data (F = 77.17, p << 0.001, R2 = 0.622, df = 

136). The probability Pmove that a mussel moves is negatively related to the short-

range density D1 and positively related to the long-range density D2 (see Fig. 2.6), 

which causes mussels to stay in places where they can aggregate with direct 

neighbors, but move away from crowded locations where food becomes limiting. In 

the model, we used a linear relationship between Pmove and the two densities: 

 

 𝑃𝑚𝑜𝑣𝑒 = 𝑎 − 𝑏𝐷1 +  𝑐𝐷2,      (2.10) 

 

which was obtained by applying linear regression to our experimental data (a = 

0.63, b = 1.26, and c = 1.05). If a mussel decided to move in our model, its step 

length l was chosen at random from a power law distribution (Newman, 2005) with 

a given Lévy exponent μ > 1: 

 

 𝑙 =  𝑙𝑚𝑖𝑛(1 − 𝑥)
− 

1

𝜇 − 1,      (2.11) 

 

where x is a random variable that is uniformly distributed over the unit interval (0 

≤ x ≤ 1), and lmin is the minimum distance traveled when moving (Clauset et al., 

2009), which we have set at 0.3 cm. Each simulation step, mussels move 

instantaneously from one location to another, though step lengths were truncated 

when a movement path was obstructed by another mussel. This truncation was 

calculated by determining the free movement path until collision, using a band 

width of 3 cm (the size of a mussel) around the line segment connecting the 

mussels’ original location to its intended destination. When a conspecific was 

located within this band, the mussel stopped in front of this conspecific, thereby 

truncating its movement path. All movements occurred simultaneously and all 

individuals in a simulation used the same movement strategy. 
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Figure 2.6: Experimental data shows that the probability of moving depends on short-range and long-

range mussel densities. (A) Local mussel density decreases the probability of moving; mussels tend to stay 

in denser clumps. (B) The probability of moving positively correlates with long-range density; mussels 

move away from areas where competition is high. 

 

As differences occur in the average distance covered per simulation step 

between the movement strategies (ballistic individuals move a larger distance per 

simulation step than Lévy or Brownian walkers) and assuming that movement speed is 

constant, more time is needed for a ballistic step than for a Brownian step. To avoid 

having Brownian movers switch more frequently between moving and stopping 

than ballistic movers, we updated the state of either moving or stopping not after 

each simulation step but after an average distance moved.  

 

A simulation was finished when the average short-range density exceeded 

1.5 times the mean long-range density. At that moment, the total distance travelled 

was recorded. As we assume that the movement speed is constant, the rate of 

patterning is proportional to the normalized inverse of the distance traversed until 

a pattern is formed. Simulations were run for a range of Lévy exponents (1 < μ ≤ 3), 

and for each value the rate of pattern formation was plotted as a function of μ. The 

model was implemented in Matlab version 7.9 (©1984-2009. The MathWorks, Inc.). 
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Evolutionary model 

 

Evolutionary change was studied in a monomorphic resident population by 

investigating whether the fitness of rare mutants is higher than that of the 

residents, implying that the mutants can increase in frequency (Geritz et al., 1998; 

Dercole & Rinaldi, 2008). After the mussels moved an equal distance, we recorded 

the short-range density, the long-range density, and the fraction of mussels that 

was still moving, for both the residents and the mutants. In a population with non-

overlapping generations, fitness is given by the product of survival probability and 

fecundity. We assumed that survival probability is proportional to the local mussel 

density D1 and that fecundity is inversely proportional to the long-range density D2 

(as this density affects food supply) and to the time X spent on moving (as energy 

spent on moving cannot be invested in offspring production). Dividing the fitness 

measures thus obtained for a mutant and a resident results in a measure for the 

relative fitness of the mutant strategy: 

 

 𝐹𝑚𝑢𝑡 =  
𝐷1,𝑚𝑢𝑡

𝐷1,𝑟𝑒𝑠
∗  

𝐷2,𝑟𝑒𝑠

𝐷2,𝑚𝑢𝑡
∗  

𝑋𝑟𝑒𝑠

𝑋𝑚𝑢𝑡
.      (2.12) 

 

Mutant strategies with a relative fitness value larger than one will invade and 

potentially take over the resident population. For any combination of resident and 

mutant movement strategy, the relative fitness of the mutants is depicted in a 

pairwise invasibility plot (Dercole & Rinaldi, 2008; see Fig. 2.3). In this plot, the 

color red indicates that the mutant has a higher fitness than the resident (Fmut > 1), 

while the color green indicates that the mutant cannot invade the resident 

population (Fmut < 1). The intersection of the line separating these two scenarios 

(Fmut = 1) with the main diagonal of the pairwise invasibility plot corresponds to an 

evolutionarily singular strategy (Geritz et al., 1998; Dercole & Rinaldi, 2008).   



43 
 

I 
Comment & Reply I: 

Emergent properties of the Lévy walk are not 

adaptive strategies 

 

 

 

 

 

Comment by: Frank van Langevelde, Willem F. de Boer, Hendrik J. 

de Knegt, Herbert H. T. Prins 

Reply by: Monique de Jager, Franz J. Weissing, Peter M. J. Herman, 

Bart A. Nolet, Johan van de Koppel. Science e-letter. 



44 
 

Comment 

M. de Jager et al.'s fascinating study on the interaction between animal movement 

and habitat complexity demonstrates that mussels move from random distributions 

to self-organized mussel beds (De Jager et al., 2011). Mussel movements show 

properties of Lévy walks with the characteristic μ ≈ 2, which is the most efficient 

random search strategy (Sims et al., 2008; Humphries et al., 2010). De Jager et al. 

argue that mussels doing a Lévy walk with μ ≈ 2 create a spatial environment in 

which this strategy is evolutionarily stable. The conclusion that Lévy walks are 

selectively advantageous is important, as it could explain why animal movements 

are often superdiffusive (Viswanathan et al., 1999; De Knegt et al., 2007). Yet we 

contest that a Lévy walk is an adaptive strategy, and argue that it is merely an 

emergent property that arises through interaction with the environment. 

 

Our simulations show that observed movement patterns differ from the 

innate movement strategy (Hengeveld et al., 2007). The typical step-length 

distribution of Lévy walks (μobserved ≈ 2) can be generated simply by truncations of 

long steps in walks with μinnate < 2: Finding targets decreases the step lengths and 

increases μ. Hence, μobserved is larger than μinnate (Fig. 2.7). With increasing target 

density, the deviation between μobserved and μinnate increases. The observed μ ≈ 2 in 

mussels can thus not be the innate μ that is selected to create mussel beds. 

 

Consequently, we predict that μinnate, measured using solitary mussels is 

smaller than μobserved in mussel bed pattern formation. Secondly, we expect that 

μobserved of the modeled mussels is larger than μinnate used in the model, due to 

truncation of large steps by obstruction from conspecifics. Therefore, we challenge 

the evolutionarily stable strategy of μ ≈ 2, and predict that μinnate < μobserved, and 

hypothesize that the μobserved at which the strategy is stable increases with mussel 

density (Viswanathan et al., 1999; De Knegt et al., 2007). More work is needed to 

understand how movement patterns are shaped by the interaction between the 

innate μ and habitat complexity. 
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Figure 2.7: Observed μobserved vs. innate μinnate (Hengeveld et al., 2007). The slopes of the downward part of 

the log-log frequency distribution of the observed flights (μobserved) are plotted against the slopes of the 

distribution of flight used to generate the paths (μinnate). The relationship is plotted for 4 (triangle) resource 

densities (measured by the mean free path between targets δ): δ = 10 (square), δ = 102 (◊), δ = 103 (Δ), δ = 

104 (•). The solid line is the reference line μinnate = μobserved. 

Reply 

F. van Langevelde et al. argue that the Lévy walks found in nature are not innate 

search strategies but rather emergent properties of the interplay between animal 

movement and environmental complexity. Their line of reasoning is that steps 

become truncated whenever an animal finds a target resource. Hence, they claim 

that the scaling exponent μ of the truncated Lévy walk that we observed in mussel 

movements should be larger than the μ of the innate search strategy, and that a 

Lévy walk therefore cannot be an adaptive strategy in dense mussel beds.  
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We agree with Van Langevelde et al. that the truncation of intended steps 

by resource encounter indeed can alter the movement pattern and increases the 

observed value of μ. However, the data that are presented in Figure 1B of our 

Report (de Jager et al., 2011) are based on movements of solitary mussels, and 

therefore collisions with other mussels do not influence their movement. Hence, as 

Lévy movement is observed in the absence of conspecifics, it must reflect their 

innate strategy.  

 

In the Supporting Online Material of our Report, however, we presented an 

analysis of the step size distribution of mussel movements in clumps of different 

densities, in which collisions do occur. Here, we concluded that the density of 

neighbors, the main determinant of the chances of a collision, did not affect the 

observed Lévy exponent μ, which was found to approximate a value of 2 for all. 

However, the results of our analysis reflected our choice to fit only a non-truncated 

power law to the data and to include samples of size n < 50. When we reanalyzed 

the data by fitting truncated Lévy walks, we found that μ indeed changes with 

mussel density: μ increases with local and long-range mussel density (Fig. 2.8; df = 

21, F = 15.46, r2 = 0.557, p <0.001).  

 

This increase in μ with mussel density may be accounted for by collisions 

with conspecifics, which cause truncation of steps, supporting the hypothesis posed 

by Van Langevelde et al. (2011). Importantly, however, we do not concur with Van 

Langevelde et al. that these observations challenge our result that a μ close to 2 is 

the evolutionarily stable strategy. Collisions with conspecifics may indeed alter the 

observed μ, but selection acts on the innate movement strategy of organisms, 

rather than on the movements that we observe. The invasibility analysis presented 

in our Report (de Jager et al., 2011) was based on the innate value of μ and not on 

the value of μ characterizing the observed movement pattern. Hence, we maintain 

our conclusion that a μ of approximately 2 is the evolutionarily stable strategy for 

mussels in self-organizing mussel beds, as is reflected by their innate strategy 

observed in the absence of conspecifics.  
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Figure 2.8: (A) The inverse cumulative step length frequency distributions (F[L>l]) of the mussel 

movements in clumps of different sizes diverges from that of the solitary mussels, resulting in a higher 

estimate of µ. D1 here indicates the mussel density within a radius of 3.3 cm. (B) When the steps are 

divided into groups based on the local and long-range mussel density, we find that the estimated µ of the 

fitted truncated Lévy walks increase with local mussel density 
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Comment & Reply II: 

Comment on ‘Lévy walks evolve through 

interaction between movement and environmental 

complexity’ 

 

 

 

 

Comment by: Vincent A. A. Jansen, Alla Mashanova, Sergei 

Petrovskii.  

Reply by: Monique de Jager, Franz J. Weissing, Peter M. J. Herman, 

Bart A. Nolet, Johan van de Koppel.  

Science 335, 918 (2012) 
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Comment 

De Jager et al. (2011) concluded that mussels Lévy walk. We confronted a larger 

model set with these data and found that mussels do not Lévy walk: Their 

movement is best described by a composite Brownian walk. This shows how model 

selection based on an impoverished set of candidate models can lead to incorrect 

inferences.                   

 

A Lévy walk is a form of movement in which small steps are interspersed 

with very long ones, in such a manner that the step length distribution follows a 

power law. Movement characterized by a Lévy walk has no characteristic scale, and 

dispersal is superdiffusive so that individuals can cover distance much quicker than 

in standard diffusion models. De Jager et al. (2011) studied the movements of 

individual mussels and concluded that mussels move according to a Lévy walk.  

 

The argument of De Jager et al. (2011) is based on model selection, a 

statistical methodology that compares a number of models — in this case, different 

step length distributions — and selects the model that describes the data best as the 

most likely model to explain the data (Burnham & Anderson, 2002). This 

methodology is used to infer types of movements of animals (Edwards et al., 2007) 

and has led to a number of studies that claim Lévy walks are often encountered in 

the movement of animals. The methodology in De Jager et al. (2011) contrasts a 

power-law distribution, which is indicative of a Lévy walk, with an exponential 

distribution, which indicates a simple random walk. If one has to choose between 

these alternatives, the power-law distribution gives the best description. However, if 

a wider set of alternatives is considered, this conclusion does not follow.  

 

Heterogeneity in individual movement behavior can create the impression 

of a power law (Benhamou, 2007; Petrovskii & Morozov, 2009; Petrovskii et al., 

2011). Mussels’ movement is heterogeneous as they switch between moving very 

little or not at all, and moving much farther (De Jager et al., 2011; Van de Koppel 

et al., 2008). If mussels switch between different modes, and in each mode display 

Brownian motion, this suggests the use of a composite Brownian walk, which 

describes the movement as a sum of weighted exponential distributions. We confronted 

this plausible model with the mussel movement data.  
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Figure 2.9: The step length distribution for mussel movement [as in De Jager et al. (2011)] and curves 

depicting some of the models. The circles represent the inverse cumulative frequency of step lengths; the 

curves represent Brownian motion (blue), a truncated power law (red), and a composite Brownian walk 

consisting of a mixture of three exponentials (blue-green). (A) Data as truncated in Fig. 1 in De Jager et al. 

(2011) (2029 steps). (B) The full untruncated data set (3584 steps).  

 

Visual inspection of the data shows that the cumulative distribution of step 

lengths has a humped pattern that is indicative of a sum of exponentials (Fig. 2.9A). 

We applied a model selection procedure based on the Akaike information criterion 

(AIC) (Burnham & Anderson, 2002; Edwards et al., 2007). We compared six 

different step length distributions: an exponential distribution, a power law, a 

truncated power law, and three hyperexponential distributions (a sum of two, three, 

or four exponentials to describe composite Brownian walks). We did this for the 

data truncated as in De Jager et al. (2011) (Fig. 2.9A) as well as all the full, 

untruncated data set (Fig. 2.9B). In both cases, we found that the composite 

Brownian walk consisting of the sum of three exponentials was the best model (Fig. 

2.9 and Table 2.3). This convincingly shows that the mussels described in De Jager 

et al. (2011) do not do a Lévy walk. Only when we did not take the composite 

Brownian walk models into account did the truncated power law model perform 

best and could we reproduce the result in De Jager et al. (2011). 

 

Mussel movement is best described by a composite Brownian walk with 

three modes of movement with different characteristic scales between which the 
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mussels switch. The mean movement in these modes is robust to truncation of the 

data set, in contrast to the parameters of the power law, which were sensitive to 

truncation [Table 2.3; also see supporting online material (SOM)]. This analysis 

does not tell us what these modes are, but we speculate that it relates to the stop-

move behavior that mussels show, even in homogeneous environments (De Jager 

et al., 2011). We speculate that the mode with the smallest average movement (~0.4 

mm) is related to non-movement, combined with observational error. The next 

mode (average movement ~1.5 mm) is related to mussels moving their shells but 

not displacing, and the mode with the largest movements (on average 14 mm, 

about the size of a small mussel) is related to actual displacement. This suggests 

that in a homogeneous environment, mussels are mostly stationary, and if they 

move, they either wobble or move about randomly. Indeed, if we remove 

movements smaller than half the size of a small mussel (7.5 mm), the remaining 

data points are best described by Brownian motion. This shows that mussel 

movement is not scale invariant and not superdiffusive.  

 

De Jager et al.’s analysis (2011) does show that mussels do not perform a 

simple random walk and that they intersperse relatively long displacements with 

virtually no displacement. However, one should not infer from that analysis that 

the movement distribution therefore follows a power law or that mussels move 

according to a Lévy walk, and there is no need to suggest that mussels must possess 

some form of memory to produce a power law–like distribution (Grünbaum, 2011). 

Having included the option of a composite Brownian walk, which was discussed in 

De Jager et al. (2011) but not included in the set of models tested, one finds that 

this describes mussels’ movement extremely well.  

 

Our analysis illustrates why one has to be cautious with inferring that 

animals move according to a Lévy walk based on too narrow a set of candidate 

models: If one has to choose between a power law and Brownian motion, often the 

power law is best, but this could simply reflect the absence of a better model. To 

make defensible inferences about animal movement, model selection should start 

with a set of carefully chosen models based on biologically relevant alternatives 

(Burnham & Anderson, 2002). Heterogeneous random movement often provides 

such an alternative and has the additional  advantage that it can  suggest  a  simple  
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Table 2.3: Model parameters and Akaike weights. The maximum likelihood parameter estimates, log 

maximum likelihoods (ML), AIC values, and Akaike weights are calculated for the data shown in Fig. 2.8, A 

and B. The Akaike weights without the composite Brownian walks are given in brackets. We analyzed the 

full data set (*) with xmin = 0.02236 mm, and the data set truncated as in De Jager et al. (2011) (†) with xmin = 

0.21095 mm. For xmax, the longest observed step length (103.9mm) was used. The mix of four exponentials 

is not the best model according to the AIC weights. It gives a marginally, but not significantly, better fit and 

is overfitted.  

 
 

mechanism for the observed behavior. 

Reply 

We agree with Jansen et al. that a composite movement model provides a better 

statistical description of mussel movement than any simple movement strategy. 

This does not undermine the take-home message of our paper, which addresses the 

feedback between individual movement patterns and spatial complexity. Simple 

movement strategies provide more insight in the eco-evolutionary analysis and are 

therefore our model of choice.  

 

 The purpose of our paper (de Jager et al., 2011; de Jager et al., 2012a) was 

to demonstrate that movement strategies are shaped by the interaction between 

individual selection and the formation of spatial complexity on the population 

level. We showed that in a family of movement models ranging from ballistic 

motion, to Lévy walk, to Brownian motion, a Lévy walk with exponent μ ≈ 2 is the  



54 
 

 

 
Figure 2.10: Movement trajectories of the 12 mussels on which we based the model fitting in our paper (de 

Jager et al., 2011).  

 

optimal strategy for mussels involved in pattern formation. Within  this  family of  

models, a single parameter (the scaling exponent μ) distinguishes between the 

different movement strategies. We intentionally chose a one-dimensional strategy 

space that can easily be used in pairwise invasibility analyses and the subsequent 

pairwise invasibility plots. It also keeps focus on the main differences in movement 

strategy, contrasting ballistic movement, Brownian diffusion, and long-tailed step 

length distributions, as in Lévy walks. As is often the case, the better fit of the 

complex model (i.e., composite Brownian walk) trades off with the elegance and 

clarity of the simpler model.  

 

Nevertheless, it might be interesting to examine the mechanisms behind 

the composite Brownian walk that was observed in our mussel movement data by 

Jansen et al. (2012). Below, we investigate three possible causes of the observed 

movement pattern: (i) mussels switch between multiple movement modes because 

of changes in environmental conditions; (ii) the (collective) composite Brownian 

walk might be an ensemble of different individual Brownian walks; or (iii) internal 

switches between movement modes exist, with which mussels try to approximate a 

Lévy walk.  

 

 



55 
 

Table 2.4: Comparison of five movement models (Brownian walk BW, Lévy walk LW, truncated Lévy walk 

TLW, composite Brownian walk with two movement modes CBW2, composite Brownian walk with three 

movement modes CBW3) for the eight mussels for which sufficient data (n > 50) were available. For each 

mussel, the table presents the Akaike Information Criterion (AIC) and the Akaike weights (wAIC) for the 

five movement models. The minimal AIC value (corresponding to the best model) is shown in bold. The 

Akaike weights correspond to the relative likelihood of each model (Burnham & Anderson, 2002). For all 

model fits, we used a lower boundary (lmin) of 0.2 mm.   

 BW LW TLW CBW2 CBW3 

Mussel AIC wAIC AIC wAIC AIC wAIC AIC wAIC AIC wAIC 

A 1917.4 0.000 1262.7 0.000 1236.6 0.000 1192.4 0.006 1182.12 0.994 

B 1293.2 0.867 2030.8 0.000 1618.1 0.000 1297.2 0.117 1301.2 0.016 

D 330.4 0.000 282.5 0.000 256.1 0.000 209.1 0.502 209.2 0.498 

F 1101.7 0.000 642.3 0.000 628.9 0.054 638.8 0.000 623.2 0.945 

G 1410.7 0.000 792.4 0.000 770.8 0.000 761.6 0.001 748.5 0.998 

H 625.5 0.000 775.6 0.000 750.3 0.000 519.9 0.881 523.9 0.119 

I 2177.2 0.000 1650.0 0.000 1592.5 0.003 1582.1 0.620 1583.1 0.376 

L 1455.8 0.000 1179.0 0.000 1129.0 0.002 1123.2 0.033 1116.4 0.966 

 

 

The first possible mechanism behind a composite Brownian walk is that 

mussels switch between movement modes in response to changes in environmental 

conditions. For example, a composite  Brownian walk  will  result  if  animals  

switch between local Brownian search within a resource patch and straight-lined 

ballistic search between patches (Benhamou, 2007; Plank & James, 2008; Reynolds, 

2009). Because the solitary mussels in our experiment were situated in a bare, 

homogeneous environment, repeated switches between movement strategies 

induced by changing environmental conditions do not provide a plausible 

explanation for the observed composite walk.  

 

A second possible explanation for the observed composite Brownian walk 

could be that variation in individual movement behavior can explain the improved 

fit by the composite Brownian model (Petrovskii et al., 2008) — for example, 

multiple different Brownian walks together make up the observed composite walk.  
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Figure 2.11: Inverse cumulative frequency distribution (e.g., the fraction of step lengths that is larger than 

or equal to a given step length) of the movement patterns of 12 individual mussels (thin dashed and dotted 

lines) and the combined data set (thick line and large dots). 

 

To investigate this, we examined the individual movement tracks of the 12 mussels 

in our experiment. We indeed found a large variety of movement trajectories (Fig. 

2.10); some mussels moved a large distance, whereas others stayed approximately 

at the original location. We fitted a Brownian walk, a Lévy walk, a truncated Lévy 

walk, and two composite Brownian walks to these individual movement trajectories,  

using the corrected data set and the analysis  suggested by Jansen et al. (de Jager et 

al. 2012a, Jansen et al., 2012). The analysis (Table 2.4 and Fig. 2.11) reveals that, in 
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most cases, a Brownian walk fitted very poorly to the data. A truncated Lévy walk 

provided large improvement over a Brownian walk, whereas a composite Brownian 

walk  provided  only small further improvement in fit, indicating that even at the 

individual level, composite behavior might underlie a long-tailed movement 

pattern.  

 

A third possibility to mechanistically underpin the improved fit by a 

composite Brownian walk is that mussels use an internal switching rule to alternate 

between movement modes, independent from external triggers. Our study (de 

Jager et al., 2011; de Jager et al., 2012a) shows that a long-tailed step length 

distribution is a rewarding strategy for mussels living in, and contributing to, a 

spatially complex system. It is not obvious, however, how an animal should achieve 

such a step length distribution in practice. It is possible that animals approximate a 

Lévy walk by adopting an intrinsic composite movement strategy with different 

modes (which do not necessarily need to be Brownian). The observation by Jansen 

et al. (2012) that a composite walk yields a better fit to the observations thus 

suggests an interesting solution for this problem, which is worth further 

investigation. However, we think it most advisable to examine this switching 

behavior by means of temporal and spatial correlations of movement steps within 

animal tracks rather than fitting multimodal models to step size distributions. In 

our opinion, the observation by Jansen et al. (2012) does not change the overall 

conclusion of our paper (de Jager et al., 2011), but it may contribute to a better 

understanding of the behavioral mechanisms by which animals achieve their 

optimal movement strategy.  
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How superdiffusion gets arrested:  

Ecological encounters explain shift from Lévy to 

Brownian movement 

 

 

 

 

 

Monique de Jager, Frederic Bartumeus, Andrea Kölzsch, Franz J. 
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Abstract 

Ecological theory uses Brownian motion as a default template for describing 

ecological movement, despite limited mechanistic underpinning. The generality of 

Brownian motion has recently been challenged by empirical studies that highlight 

alternative movement patterns of animals, especially when foraging in resource-

poor environments. Yet, empirical studies reveal animals moving in a Brownian 

fashion when resources are abundant. We demonstrate that Einstein’s original 

theory of collision-induced Brownian motion in physics provides a parsimonious, 

mechanistic explanation for these observations. Here, Brownian motion results 

from frequent encounters between organisms in dense environments. In density-

controlled experiments, movement patterns of mussels shifted from Lévy towards 

Brownian motion with increasing density. When the analysis was restricted to 

moves not truncated by encounters, this shift did not occur. Using a theoretical 

argument, we explain that any movement pattern approximates Brownian motion 

at high resource densities, provided that movement is interrupted upon encounters. 

Hence, the observed shift to Brownian motion does not indicate a density-

dependent change in movement strategy but rather results from frequent 

collisions. Our results emphasize the need for a more mechanistic use of Brownian 

motion in ecology, highlighting that especially in rich environments, Brownian 

motion emerges from ecological interactions, rather than being a default 

movement pattern. 
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Introduction 

Traditionally, ecologists apply Brownian motion and diffusive dispersal as default 

models for animal movement (Skellam 1951; Kareiva & Shigesada 1983), both at 

individual and at population levels (Benhamou 2007; Sims et al. 2008; Edwards et 

al. 2012). Recently, however, empirical studies show that animal movement can 

strongly deviate from Brownian motion (Klafter & Sokolov 2005), revealing 

superdiffusive, Lévy-like movement in resource-poor environments, but standard 

Brownian motion when resource availability is high (Nolet & Mooij 2002; 

Bartumeus et al. 2003; De Knegt et al. 2007; Humphries et al. 2010; Humphries et 

al. 2012). Animal ecologists have explained this change from Lévy to Brownian 

motion by an active shift in individual movement strategy, reflecting the 

assumption that different movement strategies are optimal under different 

environmental conditions (Bell 1991; Humphries et al. 2010; Raposo et al. 2011; 

Humphries et al. 2012). In heterogeneous, resource-poor environments, Lévy 

movement will typically be more efficient than a Brownian walk since it provides 

faster dispersal and prevents revisiting the same sites (Bartumeus et al. 2002). In 

resource-rich environments, a Brownian walk may be equally or even more 

efficient as a Lévy walk, since large steps (which are the hallmark of Lévy 

movement) provide little benefit under these circumstances (Humphries et al. 

2012).  

 

Physical theory offers an alternative, more parsimonious explanation for 

the occurrence of Brownian motion in resource-rich environments. Einstein, 

followed by Langevin, theorized that Brownian motion in solutes results from 

collisions between particles (Einstein 1905; Langevin 1908). Likewise, Brownian 

motion in ecology might result from frequent “collisions” of animals with the 

resources they are searching for (food, shelter, or conspecifics) or with items that 

they are trying to avoid (e.g. territory boundaries; Giuggioli et al. 2012). 

Untangling whether the observed movement patterns in searching animals reflect 

adaptation of intrinsic movement strategies, or are the consequence of changing 

encounter (collision) rates with resources, is crucial both for sound mechanistic 

understanding of Brownian motion and for predicting animal movement patterns 

in ecosystems where resource availability varies in space or time. 

 



62 
 

 

Here we provide evidence that, as in physics, Brownian walks in animal 

movements can be caused by frequent encounters, rather than being the result of 

adaptation to high-density conditions. In density-controlled experiments with 

young mussels (Mytilus edulis), we were able to distinguish between intrinsic 

movement strategy and the effects of resource density by separating the movement 

steps that were truncated by encounters from those that were terminated 

spontaneously. Recently, it was shown that the individual movement of young 

mussels can be approximated by a simple Lévy walk (De Jager et al. 2011; or a 

more complex multi-scale walk, which provides an even better fit [Jansen et al. 

2012; De Jager et al. 2012). The movement of individual mussels results in a self-

organized mussel bed with a regular labyrinth-like pattern where local aggregation 

yields protection against wave stress and predation while it reduces competition for 

algal food resources (Hunt & Scheibling 2001; Hunt & Scheibling 2002; Van de 

Koppel et al. 2008). Since the movement of individual mussels can be 

experimentally studied in considerable detail, this experimental system offers a 

unique opportunity to provide a mechanistic basis for the appearance of Brownian 

motion in research-rich environments.  

 

This paper is structured as follows. First, we describe movement of young 

mussels observed in density-controlled experiments, revealing that movement 

patterns are affected by changes in the density of mussels. By distinguishing 

between obstructed and unobstructed movement steps, we investigate the relation 

between intended and realized movement patterns. Second, we create an individual-

based model of self-organized pattern formation in mussel beds to examine 

whether mussel density could cause a change in the efficiency of Brownian and 

Lévy walks, explaining a possible active shift in mussel movement strategy. Third, 

we use a general argument to demonstrate that the interplay between any intrinsic 

movement strategy and frequent ecological encounters will often result in 

Brownian motion.  
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Experiments 

Methods 

Using mesocosm experiments, we investigated how mussel movement patterns are 

affected by mussel density. Young blue mussels (Mytilus edulis) of approximately 

1.5 cm in length were obtained from wooden wave-breaker poles on the beaches 

near Vlissingen, The Netherlands (51°46’ N, 3°53’ E). After careful separation and 

cleaning, the mussels were kept in containers and fed live cultures of diatoms 

(Phaeodactylum tricornutum) daily. Fresh, unfiltered seawater was supplied to the 

container at a rate of approximately one litre per minute; a constant water 

temperature of 16°C was maintained during the experiments. At the start of each 

experiment, mussels were spread homogeneously over an 80 x 60 cm red PVC 

sheet in a 120 x 80 x 30cm container. We used a red PVC sheet to provide a 

contrast-rich surface for later analysis and considered only the movements of the 

mussels within this 80 x 60 cm arena. The container was illuminated using 

fluorescent lamps. Mussel movement was recorded by photographing the mussels 

at a 1 minute interval for a duration of 300 minutes; we used a Logitech QuickCam 

9000 Pro webcam (www.logitech.com), which was positioned about 60 cm above the 

water surface.  

 

We derived the step lengths by calculating the distance between two 

reorientation events (e.g. where a mussel clearly changes its direction of 

movement) using Turchin’s angle method (Turchin 1998; De Jager et al. 2011). 

With this method. First, the observed movement path is discretized into steps on 

basis of changes in the angle (α) of the movement path at observed position i using 

the prior (i-1) and the subsequent (i+1) observed locations as follows: 

 

𝛼 = arccos [
𝑎2+𝑏2−𝑐2

2𝑎𝑐
],      (3.1) 

 

where a is the length between position i and i+1, b is the length between position i-1 

and i+1, and c is the length between positions i-1 and i. Whenever α was larger than 

a threshold angle αT, a new step is considered to start. Following Turchin’s 

approach (Turchin 1998), we used αT = π/5 for our step length calculations, as this 



64 
 

value minimized autocorrelation between subsequent turns. Using other threshold 

angles did not change our conclusions.  

 

We studied the changes in the statistical properties of the observed 

movement pattern by recording 10 individual movement trajectories for 5 different 

density treatments each (0, 1.3, 2.0, 3.3, and 5.2 kg/m2, approximately 1, 950, 1550, 

2500, and 3850 mussels per square meter) during the initial 300 minutes of pattern 

formation (Van de Koppel et al. 2008). When a mussel encountered an obstacle, 

such as a conspecific, it was forced to truncate its step, which will likely alter the 

properties of the movement pattern. We used the complementary cumulative 

distribution function (CCDF) of the observed step lengths of each individual 

mussel in the five density treatments to illustrate the observed movement patterns. 

This CCDF is a preferred method for fitting power distributions as it provides a 

more reliable representation of movement patterns than other portraying methods 

(Benhamou 2007). For each step length l, the complementary cumulative 

distribution function CCDF(l) of the observed step lengths in each density 

treatment indicates the fraction of step lengths that were at least as long as l. Using 

maximum likelihood methods, we estimated the scaling exponent μ of a power-law 

step length distribution,  

 

𝑃(𝑙) = (𝜇 − 1) ∙ 𝑙𝑚𝑖𝑛
𝜇−1

∙ 𝑙−𝜇,     (3.2) 

 

where l is the step length and l
min

 is the minimal step length of young mussels (lmin 

≤ l; Benhamou 2007; Edwards et al. 2007; Clauset et al. 2009; De Jager et al. 2011). 

The step length distribution corresponds to a Lévy walk for 1 < µ < 3 and it 

approximates a Brownian walk when µ > 3 (Bartumeus et al. 2005). We apply a 

simple power-law model rather than a more complex composite model because we 

are interested in the change of general statistical properties with mussel density 

rather than in a detailed statistical description of mussel movement (De Jager et al. 

2011; Jansen et al. 2012; De Jager et al. 2012). First, we kept the minimal step 

length constant at the fixed value lmin = 3 mm. Given lmin, the exponent μ can be 

estimated from the likelihood function (Edwards et al. 2007; Bertrand et al. 2007; 

Edwards 2008; Clauset et al. 2009):  
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𝐿(𝜇, 𝑙1, … , 𝑙𝑛) =  ∏ 𝑃(𝑙𝑖)𝑖 = (𝜇 − 1)𝑛 ∙ 𝑙𝑚𝑖𝑛
𝑛∙(𝜇−1)

∙ (∏ 𝑙𝑖)−𝜇,  (3.3) 

 

where {𝑙𝑖 … 𝑙𝑛} are the observed step lengths. Taking the natural logarithm of L 

and maximizing with respect to µ yields the maximum-likelihood estimate: 

 

𝜇 = 1 + 𝑛 ∙ (∑ ln(𝑙𝑖) − ln (𝑙𝑚𝑖𝑛))−1,    (3.4) 

 

 To check for the robustness of our results, we also fitted the observed step 

length distribution to a power law where the value of lmin was estimated separately 

for each individual trajectory (by equating lmin with the minimal observed step 

length). Our conclusions were not affected in any way.  

 

By labelling steps as truncated whenever the step ended directly in front of 

another mussel, we were able to distinguish pure, non-truncated steps from those 

truncated by collisions with conspecifics. For the same 10 individuals in the 5 

density treatments (50 mussels in total), we split the steps into truncated and non-

truncated steps, examining the distributions separately.  

 

Results 

Our mesocosm experiments illustrate that the observed movement patterns are 

strongly affected by mussel density (Figures 3.1 and 3.2). Long steps occur less 

frequently with increasing mussel density (Figure 3.2a). The scaling exponent μ 

increases with mussel density from a value below 2.5 at low densities to values 

above 3.5 at high densities (Figure 3.2b). As a second test of our hypothesis that 

observed movement trajectories become more Brownian-like with increased 

resource density, we used the Akaike Information Criterion for deciding whether 

the individual trajectories in each density class were better fitted by a power law or 

by an exponential distribution (corresponding to a Brownian walk). In 83 percent of 

the movement trajectories in the lowest-density treatment, a Lévy walk provided a 

better fit to the step length data than a Brownian walk. In contrast, 75 percent of 

the tracks in the high-density treatment were better approximated by a Brownian 

walk than by a Lévy walk. Again, we conclude that movement trajectories become 

more Brownian-like with increasing mussel density. 
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Figure 3.1: Step length distributions and model fits for movement trajectories at two mussel 

densities. Step length frequency distributions of mussel 15 in the 0 kg m-2 treatment (a) and mussel 2 in 

the 5.2 kg m-2 treatment (b), together with an illustration of the movement paths. The fitted lines to the 

complementary cumulative distribution functions (CCDF) of the step lengths of mussel 15 (c) and mussel 2 

(d) indicate how well the movement trajectories are represented by a Lévy walk (LW) and a Brownian walk 

(BW).   

Closer examination of the movement data indicates that the change of step 

length distribution with mussel density results from the frequent truncation of step 

lengths at high densities (Figure 3.2c-d). The fraction of truncated steps increases 

with mussel density (Figure 3.2c), presumably because the number of encounters 

leading to an interruption of the movement increases with density. When only 

considering non-truncated steps, mussel movement does not significantly differ 

between density treatments (Figure 3.2d). We conclude that the intrinsic movement  
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Figure 3.2: Effect of mussel density on individual movement trajectories. (a) Complementary 

cumulative distribution function (CCDF) of the pooled step lengths of moving mussels measured for three 

density treatments. With increasing mussel density, the fraction of long steps decreases. (b) Estimated 

scaling exponent µ as a function of mussel density; µ increases with mussel density (linear regression, β1 = 

0.73, r = 0.46, df =46, P < 0.001; bars indicate average μ per density group ± SE) and takes on values beyond 

3 at high densities. (c) The fraction of steps that are truncated by collisions increases with mussel density 

(bars indicate means ± SE).  (d) When considering the non-truncated steps only, the scaling exponent μ 

remains approximately constant (linear regression, β1 = 0.18, r = 0, df =26, P = 0.593; bars indicate average 

μ per density group ± SE).  

strategy of the mussels does not change with density and that  the  observed  

change from Lévy-like to Brownian-like movement results solely from the 

increased mussel encounter rates at high density.   
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A model of mussel movement 

Methods 

Using a well-established model for mussel movement (De Jager et al. 2011), we 

investigated whether an active switch from Lévy to Brownian movement at high 

densities is more efficient than the persistent use of Lévy movement. We ran 

individual-based computer simulations for a range of values of the scaling 

exponent μ and at various densities, where we repeated each simulation 10 times to 

account for stochasticity. Whenever a displacement was restricted by the presence 

of a conspecific, the step was truncated. In each simulation, we determined the sum 

D of all displacements required before the mussels settled in a stable pattern. The 

inverse of D can be viewed as a measure of the patterning efficiency of the 

movement strategy under consideration (De Jager et al. 2011; Viswanathan et al. 

1999). 

 

Results 

Brownian movement is often assumed to be more efficient in dense environments; 

some researchers thus argue that animals switch from Lévy to Brownian 

movement when encountering areas of higher resource density. However, 

simulations with our individual-based model (De Jager et al. 2011) of mussel 

movement demonstrate that Lévy movement is at least as efficient as Brownian 

motion at all densities. At low densities, a Lévy walk with exponent μ ≈ 2 is the 

most efficient movement strategy (Figure 3.3). At higher densities, all movement 

strategies with 2 ≤ μ ≤ 3 lead to Brownian-like movement patterns and therefore 

have a similar patterning efficiency; hence, the simulations do not support the 

hypothesis that Brownian movement strategies lead to more efficient aggregation 

than Lévy movement strategies. This implies that there is no necessity to switch to 

a Brownian strategy with increasing density, and the mussels in our experiments do 

not behave suboptimally when using a Lévy walk at high densities (Figure 3.2d). 

 

 



69 
 

 

 

 

 
Figure 3.3: Patterning efficiency as a function of the scaling exponent µ in model simulations for five 

different mussel densities. At low mussel density (n=500), a Lévy walk with μ ≈ 2 has the highest 

patterning efficiency, i.e., this movement strategy creates a spatial pattern with a minimum of 

displacements. At higher densities, a Lévy walk with μ ≈ 2 still appears optimal, but most other movement 

strategies (including a Brownian walk) perform equally well. Bars indicate means of 10 simulations ± SD; 

lines illustrate cubic smoothing splines through the model results. Patterning efficiency, measured as the 

inverse of the distance D moved per mussel until a pattern was formed, was normalized by dividing by the 

largest efficiency found in all simulations.  
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A general argument 

By means of a general argument, it can be seen that the transition from non-

Brownian to Brownian motion at high densities is a general phenomenon and not 

restricted to mussel movement. Consider a population of animals where the 

individuals have a certain intrinsic movement strategy, such as a Lévy walk with a 

given exponent μ. If all individuals could complete their movement steps 

uninterrupted, this movement strategy would result in a step length distribution 

with a complementary cumulative distribution function CCDFintended(l) (as in Figure 

3.2a, CCDF(l) corresponds to the probability that a step is longer than or equal to l). 

Suppose now that an animal terminates its movement whenever it encounters its 

desired target, such as food or shelter. (The same arguments apply when moves are 

terminated due to encounters with obstacles or the presence of a potential danger, 

such as a predator or a rival.) If the encounters of the moving animals with the 

target objects is random, the probability that an intended step of length l will not 

be terminated is given by the zero term of a Poisson distribution: e-kAl, where A is 

the density of target objects and k is a constant of proportionality that reflects 

aspects such as the search window of the animal or the size and visibility of the 

target objects. As a consequence, the complementary cumulative distribution 

function of the realized (and observed) step length distribution is given by 

 

𝐶𝐶𝐷𝐹𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑(𝑙) = 𝐶𝐶𝐷𝐹𝑖𝑛𝑡𝑒𝑛𝑑𝑒𝑑(𝑙) ∙ 𝑒−𝑘𝐴𝑙 .    (3.5) 

 

Since step lengths will become shorter due to the termination of steps by 

encounters, the realized step length distribution will have a different signature than 

the intended step length distribution. In particular, intended longer steps will be 

terminated more often than intended shorter steps, and the probability that a step 

is terminated will depend on the density of target objects. For large densities of the 

target object, the exponential term becomes dominant and forces the tail of the 

CCDF towards the exponential distribution that is characteristic of Brownian walks 

(Figure 3.4). For example, the CCDF of an intended Lévy walk with exponent 

μintended = 2 results in a realized CCDF that, due to the termination of steps by 

encounters with the target object, resembles the CCDF of a Lévy walk with a larger 
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Figure 3.4: Difference between intended and realized step length distribution for various densities 

of the target object. (a) Complementary cumulative distribution functions (CCDF) of the realized step 

lengths of organisms using a Lévy walk with scaling exponent μintended = 2 as their intrinsic movement 

strategy. Only at zero density, the realized CCDF corresponds to the intended CCDF, while the fatness of the 

tail of the distribution strongly decreases at higher densities. The realized CCDF approximately correspond 

to the CCDF of a power law with scaling exponent μrealized = 2.5, 2.9, 3.0, and 3.5 for the increasing densities, 

respectively. (b) Relationship between intrinsic scaling exponent μintended and realized scaling exponent 

μrealized for various object densities. Movement patterns are often classified as a Lévy walk (LW) when the 

estimated value of µ is between 1 and 3 and as Brownian walk (BW) when µ > 3.  

exponent μrealized (Figure 3.4a). In more general terms, an intended movement 

strategy that is not Brownian at all takes on the signature of Brownian motion 

when intended movement steps are frequently terminated because of a high 

density of target objects (Figure 3.4b).  

 

Discussion 

Einstein demonstrated that Brownian motion of dissolved particles can be 

explained by heat-driven collisions of these particles with the molecules of the 

liquid (Einstein, 1905; Langevin, 1908). Despite obvious differences between 

movement in particles and organisms, our study shows that in analogy to physics, 

encounters between organisms result in Brownian motion, in particular when 

found in encounter-rich environments. We observed that under controlled, 

experimental conditions, mussel movement patterns shifted from Lévy to 

Brownian motion with increasing mussel density. By separating truncated from 
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non-truncated steps, we were able to show that this change in movement pattern is 

entirely the consequence of increased encounter rate, as we did not observe a shift 

in intrinsic movement strategy. We furthermore demonstrated the universality of 

this principle with a simple argument, showing that in general, encounters lead to 

Brownian motion in animal movement patterns.  

 

The shift from Lévy-like to Brownian movement with increasing density 

has so far been explained as an adaptation to increased resource availability. 

Animals are considered to adapt to increased encounters with food items by 

refraining from large-scale movement steps, hence leading to adaptive Brownian 

walks (Bell, 1991; Frank, 2009). However, our study provides a different perspective 

on the observed shift from Levy-like to Brownian movement. When encounter rates 

are low, the observed movement pattern reflects the intrinsic search strategy, 

which can strongly deviate from Brownian movement. When encounter rates are 

high, the signature of the intrinsic search strategy is lost; large movement steps are 

frequently truncated by encounters and the movement pattern resembles Brownian 

motion irrespective of the underlying intrinsic strategy. This has important 

implications for ecological theory, as here Brownian motion is not a default, 

intrinsic movement mode that underlies animal dispersal, but emerges from 

ecological encounters between organisms, such as encounters with food items or 

interference with conspecifics, like the physical obstruction of mussel movement 

observed in our study.  

 

The explanation of encounters driving Brownian motion can clarify 

observations from a number of terrestrial and marine studies. For instance, studies 

by Bartumeus et al. (2003), De Knegt et al. (2007), and Humphries et al. (2010, 

2012) illustrate that microzooplankton, goats, marine predators, and albatrosses all 

exhibit Brownian motion in areas with high food density and Lévy-like movement 

in resource-poor environments. These studies highlight that an increased 

prevalence of Brownian motion in resource-rich environments is a general trend in 

ecological systems. Our explanation that encounters obscure the innate movement 

strategy into an observed movement pattern that closely resembles a Brownian 

walk rationalizes this universal trend. As a variety of ecological encounters, such as 

predator-prey interactions, mating, or aggregation, are prone to occur in real 
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ecosystems, observed animal movement patterns will always deviate from the 

employed intrinsic movement strategy. Especially in rich environments, resource 

encounters may alter the movement pattern extensively. Hence, our study not only 

illustrates the generality of this principle, but also highlights the importance of 

ecological interactions in shaping movement patterns of organisms throughout 

nature. 

 

While density-dependence of demographic processes such as growth and 

predation forms the cornerstone of ecological theory, animal movement and 

dispersal are typically approximated by density-independent linear diffusion, based 

on the assumption of Brownian motion. This study, in combination with previous 

work (Nolet & Mooij 2002; Bartumeus et al. 2003; De Knegt et al. 2007; Humphries 

et al. 2010; Humphries et al. 2012; De Jager et al. 2011; Van de Koppel et al. 2008) 

shows that for many organisms, this assumption is not valid; both movement rates 

and movement characteristics may change as a function of the local density of food 

items or conspecifics, being either through ecological encounters as advocated in 

this paper, or through adaptation of movement (Humphries et al, 2010). As a 

consequence, movement characteristics at the population level may change with 

density, for instance from superdiffusive dispersal at low encounter rates, to more 

conservative linear diffusion at high encounter rates. This can have important 

consequences for, for instance, the rate of spread of infectious diseases and invasive 

species, or the formation of self-organized patterns. As the underlying movement 

strategy will often be masked under high-density conditions and organisms thus 

might behave differently under low-density conditions, one must be careful not to 

draw too far-reaching conclusions from movement patterns observed in dense 

environments. A more mechanistic understanding of ecological movement, 

facilitated by current improvements in techniques to monitor moving animals, will 

greatly expand our ability to examine, model, and comprehend animal movement 

patterns and their influence on other ecological processes. 
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Appendix A 
 

Table 3.1: Best fits of exponential distributions (e.g. Brownian walks) and Pareto distributions (e.g. 

Lévy walks) to individual movement trajectories. The last column indicates whether a Brownian walk 

better represents the observed step length distribution than a Lévy walk (0 = LW fits better than BW; 1 = 

BW fits better than LW). Here, we used variable lower boundary estimates (lmin) and corrected for sample 

size in order to compare Akaike Information Criterions (AIC).   

Density 
(kg m-2) 

Mussel 
nr 

Brownian walk Lévy walk Brownian walk fits 
best? lmin lambda AIC lmin mu AIC 

0 1 0.10 1.57 113.29 0.10 1.83 19.93 0 

0 2 0.10 0.58 313.33 0.10 1.56 217.65 0 

0 3 0.05 0.59 309.22 0.10 1.57 208.16 0 

0 4 0.95 6.99 -183.09 0.95 8.72 -187.19 0 

0 5 0.05 0.89 226.23 0.05 1.55 88.24 0 

0 6 0.15 8.66 -227.78 0.15 3.10 -228.12 0 

0 7 0.10 5.33 -130.63 0.10 2.20 -126.66 1 

0 8 0.15 5.53 -137.87 0.15 2.55 -133.99 1 

0 9 0.05 3.88 -67.40 0.05 1.87 -139.78 0 

0 10 0.20 1.52 120.85 0.20 1.98 90.12 0 

0 11 0.10 11.09 -277.17 0.05 2.35 -307.42 0 

0 12 0.05 1.23 162.13 0.05 1.77 -85.90 0 

0 13 0.05 0.47 357.08 0.05 1.44 219.35 0 

0 14 0.05 0.18 549.22 0.05 1.38 330.15 0 

0 15 0.05 0.99 205.15 0.05 1.68 -24.44 0 

0 16 0.05 20.17 -396.88 0.10 3.74 -385.31 1 

0 17 0.10 11.60 -286.20 0.10 3.19 -322.56 0 

0 18 0.05 1.28 154.34 0.05 1.59 45.46 0 

Average 18 0.13 4.59 44.66 0.14 2.45 -40.13 0.17 

1.3 1 1.05 0.37 404.29 2.10 2.64 374.86 0 

1.3 2 2.65 0.46 357.43 2.65 3.12 340.23 0 

1.3 3 3.70 0.71 268.58 3.70 4.76 251.28 0 

1.3 4 0.50 0.43 373.52 1.05 2.11 374.15 1 

1.3 5 3.15 0.77 252.67 3.15 4.15 264.69 1 

1.3 6 2.65 0.80 246.31 2.65 3.99 244.23 0 

1.3 7 2.10 1.02 198.75 2.10 4.06 192.39 0 

1.3 9 2.35 0.40 388.00 2.65 2.92 373.05 0 

1.3 10 2.10 0.43 373.62 2.10 2.87 334.09 0 

Average 9 2.25 0.60 318.13 2.46 3.40 305.44 0.22 
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Density 
(kg m-2) 

Mussel 
nr 

Brownian walk Lévy walk Brownian walk fits 
best? lmin lambda AIC lmin mu AIC 

2 1 0.75 0.33 427.68 1.05 1.98 422.09 0 

2 2 2.15 0.44 369.44 2.15 2.68 372.77 1 

2 3 2.65 0.53 327.30 2.65 3.29 317.86 0 

2 4 2.85 0.26 469.67 2.40 2.28 481.10 1 

2 7 2.10 0.48 348.91 2.10 2.70 359.88 1 

2 8 3.10 0.37 400.85 3.10 2.93 397.65 0 

2 10 1.05 0.35 416.77 1.50 2.26 397.66 0 

Average 7 2.09 0.39 394.37 2.14 2.59 392.72 0.43 

3.3 1 1.50 0.60 305.88 2.10 3.08 302.72 0 

3.3 2 2.65 0.52 336.43 2.65 3.14 339.95 1 

3.3 3 1.60 0.44 369.10 1.60 2.49 351.46 0 

3.3 5 3.15 1.20 165.97 3.15 5.58 171.03 1 

3.3 6 2.65 0.88 228.29 2.65 4.13 232.45 1 

3.3 8 2.10 0.61 302.65 2.65 3.63 281.23 0 

3.3 10 2.10 0.60 302.02 2.10 3.13 292.17 0 

Average 7 2.25 0.69 287.19 2.41 3.60 281.57 0.43 

5.2 1 1.05 1.25 157.25 1.05 3.18 148.01 0 

5.2 2 2.10 0.88 228.71 2.10 3.63 234.94 1 

5.2 3 3.00 0.89 227.34 3.00 4.53 227.91 1 

5.2 4 3.15 0.76 257.64 3.15 4.19 261.18 1 

5.2 5 3.70 1.12 180.00 3.70 5.99 182.54 1 

5.2 7 3.15 0.78 251.06 3.15 4.28 254.33 1 

5.2 9 3.70 1.00 201.04 3.70 5.60 201.87 1 

5.2 10 2.65 0.75 261.99 2.65 3.86 258.35 0 

Average 8 2.81 0.93 220.63 2.81 4.41 221.14 0.75 
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Appendix B 
 

 

 
Figures 3.5 – 3.9: Individual movement trajectories of 10 mussels in different density treatments.  
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Abstract 

Recently, Lévy walks have been put forward as a new paradigm for animal search 

and many cases have been made for its presence in nature. However, it remains 

debated whether Lévy walks are an inherent behavioural strategy or emerge from 

the animal reacting to its habitat. Here, we demonstrate signatures of Lévy 

behaviour in the search movement of mud snails (Hydrobia ulvae) based on a 

novel, direct assessment of movement properties in an experimental setup using 

different food distributions. Our experimental data uncovered clusters of small 

movement steps alternating with long moves independent of food encounter and 

landscape complexity. Moreover, size distributions of these clusters followed 

truncated powerlaws. These two findings are characteristic signatures of 

mechanisms underlying inherent Lévy-like movement. Thus, our study provides 

clear experimental evidence that such multi-scale movement is an inherent 

behaviour rather than resulting from the animal interacting with its environment.  
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Introduction 

Many animal species move through differently structured landscapes searching for 

food. When food items are unperceivable, animals are assumed to follow 

specialised random search strategies in order to maximise foraging gain (Pyke, 

1984; Zollner & Lima, 1999; Viswanathan et al., 2000; Bartumeus et al., 2002). 

Going beyond the classical approaches based on Brownian motion (Turchin, 1998), 

Lévy walks (Viswanathan et al., 1996; Viswanathan et al., 1999) have been put 

forward as a new movement paradigm for animals searching for rare, hard-to-find 

food items.  

 

Lévy walks are a special case of multi-scale walks, composed of clusters of 

short movement steps and frequent turns (i.e. small-scale clusters of area-restricted 

search) alternating with long-distance displacements. The ratio of short vs. long 

steps is scale invariant in Lévy walks, described by the powerlaw probability density 

function P(x_i) ≈〖x_i〗^(-μ), with x_i being the move length (displacement of 

consistent direction) and μ representing the powerlaw exponent, where 1 < μ  ≤ 3. 

To make a distinction between this mathematically strict Lévy foraging hypothesis 

and biological, Lévy-like movement that optimises search, we introduce for the 

latter the term “multi-scale search behaviour”. 

 

Initial scepticism against Lévy walks in natural systems (Boyer et al., 2006; 

Reynolds & Bartumeus, 2009) and critics on methodology (Edwards, 2011; Edwards 

et al., 2007; Viswanathan, Raposo & da Luz, 2008) have been overturned (Reynolds 

& Rhodes, 2009; Humphries & Sims, 2014), but see (Pyke, 2014), and many studies 

now show convincingly that Lévy-like, multi-scale search behaviour is not only 

present in a wide range of extant animals and humans (Ramos-Fernandez et al., 

2004; Sims et al., 2008; Bartumeus et al., 2010; Franks et al., 2010; De Jager et al., 

2011; Humphries et al., 2012; Raichlen et al., 2014; Reynolds, Schultheiss & Cheng, 

2014; Seuront & Stanley, 2014), but can even be found in trace fossil trails (Sims et 

al., 2014). 

  

The greatest challenge, however, is yet to discover and understand the 

mechanisms that underlie such multi-scale search patterns (Bartumeus, 2009; 
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Stumpf & Porter, 2012). On the one hand, it has been argued that the observed, 

long-tailed move length distributions that point to a Lévy walk can result from the 

interactions of animals with fractal-shaped landscape properties (Boyer et al., 2006; 

Benhamou, 2007; Humphries et al., 2010), obscuring underlying Brownian 

movement. This hypothesis, called the composite Brownian walk (Benhamou, 

2007), presumes that area-restricted search (ARS) is triggered by encounter of food 

or food-rich patches. On the other hand, evidence is increasing that multi-scale, 

Lévy-like movement patterns are shaped by intrinsic behaviours, independent of 

environmental drivers (Maye et al., 2007; Sims et al., 2012; De Jager et al., 2014). 

 

Recent simulation studies and experiments have shown that multi-scale 

walks are optimal search (and foraging) strategies for a wide range of 

environmental conditions (Bartumeus et al., 2014; De Jager et al., 2014; Humphries 

& Sims, 2014; Raichlen et al., 2014), including completely uniform, unstructured 

landscapes (Maye et al., 2007; Reynolds, Lepretre & Bohan, 2013). Timing of 

spontaneous behaviours, like flight turns in Drosophila (Maye et al., 2007), ambush 

waiting in marine predators (Wearmouth et al., 2014) and activity dynamics of mice 

(Proekt et al., 2012), as well as planned task cueing in humans (Barabasi, 2005) 

revealed Lévy walk characteristics without environmental feedback, indicating 

intrinsic control by the nervous system. In million-year old fossil tracks, Lévy walks 

were suggested to have emerged from simple self-avoiding trails, again suggesting 

an intrinsic mechanism that has evolved as a natural adaption (Sims et al., 2014). A 

combination of intrinsic and extrinsic drivers of Lévy walk patterns was shown by 

copepods searching for mates (Seuront & Stanley, 2014). They exhibited intrinsic 

multi-scale search patterns in the absence of chemical cues as well as if pheromone 

was present, but with increased powerlaw exponents leading to more localised 

movement in the latter case. However, most of those examples are behaviours less 

complex than foraging, and a simple approach to test for the presence of intrinsic, 

multi-scale movement as foraging strategy still seems to be lacking (Reynolds, 

2012). 

 

To fill this gap, we followed an alternative approach and experimentally 

tested for the presence of intrinsic Lévy-like search behaviour using small animals, 

mud snails (Hydrobia ulvae), foraging within artificial landscapes of patches of 
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diatoms, their main food. After investigating the snails’ cognitive performance, we 

determined their movement characteristics in artificial landscapes with different 

degrees of food heterogeneity. First, we evaluated the hypothesis, characteristic of 

Lévy foraging behaviour that ARS clusters would occur irrespective of the 

encounter of food. This hypothesis was contrasted against the alternative 

hypotheses that (i) ARS clusters would form only in response to food encounter, 

which is the premise underlying the composite Brownian walk, and that (ii) snails 

would move straight between food patches (ballistic search) (James, Plank & 

Brown, 2008; Plank & James, 2008). Second, we tested if the ARS clusters showed a 

long-tailed size distribution irrespective to the landscape configuration. This would 

indicate a complex alternation mechanism of intensive and extensive search 

behaviour (Méndez, Campos & Bartumeus, 2014) and point to intrinsic multi-scale 

search behaviour. 

 

Methods & Results 

Experiments 

We collected sediment, benthic diatoms and mud snails at two different intertidal 

mud flats, the Kapellebank in the Westerschelde estuary (51.45°N, 3.97°E) and 

Dortsman in the Oosterschelde (51.52°N, 4.02°E; Netherlands). Before use in the 

laboratory, the muddy sediment was defaunated (freezing at  20°C for two days) and 

sieved (5mm) to remove coarse particles. Snails were kept in an aerated container 

with a thin layer of mud, filtered sea water and cultured diatoms for food.  

 

To set up foraging landscapes, we isolated and cultivated motile epipelic 

diatoms (Round, 1981), one of the major components of mud snail diet (Haubois et 

al., 2005). The filtered diatom suspension was applied on defaunated mud in 30 x 45 

cm plastic containers, and food patch patterns were created by using a mesh 

template of 1.5 x 1.5 cm grids. Mesh cells were either filled with diatom suspension 

or filtered sea water. The food density in the patches was very high (approximately 

100 µg chlorophyll-a per g sediment (Weerman, Herman & Van de Koppel, 2011)) 

to avoid depletion. To allow the diatoms to grow, the containers were placed below 

red and white LED light with a 12:12 h light-dark cycle and the temperature was set 

to 13°C.  
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After confirming the assumption of limited cognitive performance for our 

system (see Appendix), the main experiment was set up. We prepared containers of 

five different landscape types for the main experiments (performed 27/07 – 6/09 

2010)). Two landscapes were homogeneous (bare mud or completely covered with 

diatoms) and three landscapes were prepared with 10% of its surface covered with 

diatoms in different levels of patchiness (see Appendix). The “regular” landscape 

was constructed by arranging mesh cells completely regularly, which allowed for 

frequent food encounter. The “random” landscape was created by placing the same 

amount of cells randomly. With the “fractal” landscape we intended to replicate the 

patchy character of the natural habitat of mud snails; it was created using the 

Midpoint displacement algorithm (Saupe, 1988). 

 

Once the diatoms were well grown on the mud, the mesh cells were 

carefully taken off. The container was refilled with approximately 2 cm of filtered 

sea water, placed away from the LED lights under a webcam (Logitech QuickCam 

9000 Pro) that was outlined by two fluorescent lights, providing homogeneous light 

conditions. Before each experiment, nine naïve snails (that had not been used for 

any experiment before) were starved for one hour and marked with a small dot of 

yellow nail polish for track recognition. All snails were treated in the same way, so 

the tracks in our experiment reflect comparable conditions apart from the 

experimental treatments. Furthermore, our conclusions are likely generalizable to 

unmarked snails, as the movements of a small sample of snails without nail polish 

were similar (see Appendix), and hence the nail polish seems not to notably have 

affected the snails’ movements. Then, the snails were placed on the landscape in 

three rows and three columns at equal distances from each other, and the camera 

was set to take a picture each 10 s to record their movement paths for five hours. 

After this time the experiment was finished and the snails were removed. 

 

The positions of each snail were digitised as x/y coordinates, additionally 

recording whether the position was on a food patch or not. For each landscape, we 

used four replicates. Each snail was only used once, so altogether we recorded the 

tracks of 180 individual snails. However, for one of the regular landscapes the 

experiment failed (landscape pattern destroyed), so that we used the tracks of 171 

snails only. Furthermore, due to burrowing behaviour some snails did not move. 
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Others moved directly to the edges of the containers, where we truncated their 

tracks. For analysis we selected only individual tracks that contained >50 steps 

(N=116). The number of those tracks did not differ much between landscapes.  

 

Data analysis 

For each individual, the regularly sampled snail tracks were aggregated into 

sequences of moves, i.e. quasi-linear track segments at which the snail did not 

change direction. We used two segmentation methods: (i) a new approach that 

identifies direction reversals in single dimensions (1D method; (Humphries, 

Weimerskirch & Sims, 2014)) and (ii) a 2D technique extracting segments where 

the snail turns less than a certain threshold angle (Turchin, 1998). This threshold 

was selected to minimise the autocorrelation of stepwise directions (De Jager et al., 

2011), in our case 45 degrees. We determined and compared move length 

distributions of the two data sets, both for the tracks pooled by landscape and for 

each individual separately, forestalling that Lévy walks might be apparent from 

pooling the movement of animals that perform Brownian walks with typical move 

lengths of different sizes (Petrovskii, Mashanova & Jansen, 2011). 

  

To additionally explore the influence of food encounter on move lengths, 

each of the two sets of distributions was split into moves (partly) within and 

(completely) outside of food patches. Each distribution was then fit to powerlaw, 

truncated powerlaw, exponential and hyperexponential (k=2 or k=3) distributions 

using maximum likelihood methods (Jansen, Mashanova & Petrovskii, 2012). We 

selected the best fit by means of Kolmogorov-Smirnov goodness of fit, G-Tests and 

Akaike weights (Clauset, Shalizi & Newman, 2009). From the 2D move lengths, 

characteristic scales si of hyperexponential distributions were calculated as si = 

xmin + 1/λi (Jansen, Mashanova & Petrovskii, 2012) and compared to the mean free 

path (mean distance between two food patches) for each landscape type. 

 

Before fitting, we determined the minimum and maximum value (xmin, 

xmax) for every set of move lengths. We calculated xmin by using a bilinear fit and 

selecting the change point, as has already been shown successfully (Franks et al., 

2010). For determining xmax, we applied statistical theory (Pueyo, 2003), 

depending on maximum likelihood estimation and confidence intervals. 
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For testing the inherent multi-scale walk concept that animals alternate 

small and large steps irrespective of the external environment, we calculated 

clusters of small steps (ARS clusters) from the original tracks and compared their 

properties between landscapes. We used the Brownian Bridge Kernel Method 

(BBKM) (Horne et al., 2007; Sawyer & Kauffman, 2011), defining a regular grid for 

the landscapes (100 x 100 units, proportion of half arena size 300 mm to snail size 3 

mm) in which the movement tracks were embedded and attributed a probability of 

animal presence to each cell (see Appendix). Each track was separated into 

positions within and outside of ARS clusters by selecting a cut-off probability 

outline (from the 25-80% outlines (Sawyer & Kauffman, 2011)) that maximised the 

difference between average turning angles in and outside of ARS clusters.  

 

For each ARS cluster (shaped by ≥ 3 snail positions) we determined its 

maximum width (i.e. the maximum distance between any pair of two points of the 

cluster), area covered by the minimum convex polygon and time the snail spent in 

the cluster. The BBKM also detects clusters of slow, straight movement. To avoid 

considering these as ARS clusters, for any further analyses we excluded clusters for 

which the ratio of cluster area and cluster maximum width was below 0.2. 

Distributions of cluster sizes with and without encounter of food were fit to 

powerlaw, truncated powerlaw, exponential and hyperexponential distributions 

(similarly to move length distributions, see above). 

 

To address the question whether mud snails alter their movement strategy 

at food encounter, we analysed their reorientation behaviour when they 

encountered and later left a food patch. We compared the distributions of turning 

angles of 2D moves between entry and exit of a food patch with randomly placed 

turns of similar temporal spacing. 

 

Finally, we analysed the search efficiency of mud snails with a survival 

analysis (Kleinbaum & Klein, 2005) grouping the tracks of regular, random and 

fractal landscapes. The variable of interest was the estimated probability of 

encountering a food patch after leaving one; this was calculated as the inverse of 

time until food encounter. We only included encounters after a snail had the 

experience of food  encounter  to  avoid bias  due  to  different  initial  positions and  
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Figure 4.1: Cumulative move length distributions of mud snail tracks. From regularly sampled tracks, 

moves were determined as consecutive 2D track segments with turning angles of < 45° or as 1D direction 

reversals.  (a) Pooled distributions of 2D move lengths and (b) 1D move lengths in x-axis direction (y-

axis similar, not shown) of individuals foraging in five different landscapes, showing similar patterns. 

They point to an inherent multi-scale movement strategy, being only slightly modified by food 

encounters. (c) Pooled 2D and (d) 1D x-axis (y-axis similar, not shown) move length distribution of snails 

in the fractal landscape with maximum likelihood fits of exponential (simplest way of random 

movement), truncated powerlaw (indicating Lévy walks) and hyperexponential models (k = 2 and k = 3; 

recently proposed to stand for composite Brownian walks). The latter is favoured by AICs. (e) Pooled 

distributions of 2D and (f) 1D move lengths occurring only between food patches in four different 

landscapes. Dashed lines indicate the hyperexponential (k = 3) best fits to each of the distributions. Note 

that distributions did only slightly change shape compared to (a) and (b). 
 

mean free paths in each of the landscapes. For each snail track we selected 

trajectory fragments that started when the snail had left a food patch and ended (i) 

at the subsequent encounter of either the same  or  another  food patch, (ii)  when  

the  snail left the container, or (iii) when the experiment was terminated. The last 

fragment of each track is of type (ii) or (iii), therefore those segments were 

considered “censored data”. This means that time until the next food encounter is 

assumed to be after leaving the container or after termination of the experiment, 

but unknown. 

 

Results and Discussion 

Fitting move length distributions 

When accumulating the move lengths of all individual snails per landscape type, 

irrespective if obtained using the 1D or 2D method (summing to over 22,000 (1D) 

and 40,000 (2D) analysed displacements), move length distributions were similar 

between  the  landscapes  (Fig.  4.1a,  b)  and  clearly  showed  fat  tails  (i.e.  a  high  
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Table 4.1: Parameters and test statistics of (a) move length distributions (unit: mm) and (b) area sizes of 

ARS clusters outside of food patches (unit: mm2), per landscape. xmin is the minimum move 

length/cluster size (obtained from a bilinear fit), wTPL and wCBW3 are Akaike weights for the truncated 

powerlaw and hyperexponential fits with k=3. G and D are the goodness of fit statistics of the G-test and 

the Kolmogorov-Smirnov test; for the latter we provide a bootstrapped p-value. µ is the scaling exponent 

of the truncated powerlaw fit, OM is the order of magnitude over which this fit ranges, s1, s2 and s3 are 

the characteristic scales of the exponential components of the hyperexponential distribution. Bold 

numbers indicate best fits; italics emphasize important scales and significant exponents. Fits to 

powerlaw, exponential and hyperexponential (k=2) distributions were included in the analysis, but not 

listed here, because of poor results. 

  (a) Move length distributions 

  bare fractal random regular complete 

xmin 1.1 1.1 1.2 1.3 1.2 

wTPL 0 0 0 0 0 

G -450 -494 -632 -575 -645 

D (p) 0.099 (0) 0.097 (0) 0.080 (0) 0.089 (0) 0.099 (0) 

µ 2.15 2.15 2.59 2.45 2.31 

OM 2.44 2.44 2.51 2.09 2.31 

wCBW3 1 1 1 1 1 

G -63445 -69595 -89138 -80999 -90876 

D (p) 0.011 (0.10) 0.014 (<0.01) 0.013 (<0.01) 0.030 (<0.01) 0.011 (<0.01) 

scale 1 2.63 2.59 2.25 2.53 2.59 

scale 2 13.89 6.87 10.69 7.14 5.94 

scale 3 48.99 35.53 43.78 25.87 35.48 

  (b) Cluster area size distributions 

xmin 2.4 32.9 6.9 6.1   

wTPL 0.11 0.96 0.8 0   

G -15 -1.3 -12.9 -11.7   

D (p) 0.099 (0) 0.091 (0.19) 0.073 (0.09) 0.122 (0)   

µ 1.5 1.82 1.79 1.63   

OM 4.22 2.16 3.31 2.4   

wCBW3 0.89 0.02 0.1 0.98   

G -5.04 -0.5 -5.79 -1646   

D (p) 0.028 (0.64) 0.042 (0.80) 0.031 (0.70) 0.029 (0.87)   

scale 1 6.02 67.22 11.93 6.1   

scale 2 20.41 172.12 28.19 21.65   

scale 3 759.19 2415.49 178.81 163.25   

 

frequency of long displacements), which is indicative for Lévy-like search 

behaviour. However, our statistical analyses showed that the composite movement 

model consisting of three exponentials (Fig. 4.1c-d, Tab. 4.1a) provided a superior fit 

over the other models,  pointing   at   possible   composite  Brownian  movement  

(Benhamou,  2007; Jansen, Mashanova & Petrovskii, 2012). Yet, very similar 
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composite exponential fits of the 2D move lengths, with similar characteristic 

scales (pairwise Wilcoxon-Tests p > 0.7; Tab. 4.1a) were obtained for both the patchy 

and homogeneous landscapes. This undermines the basic assumption of ARS 

models like composite Brownian walks that environmental triggers drive switches 

between alternate movement modes (Benhamou, 2007; Humphries et al., 2010; 

Jansen, Mashanova & Petrovskii, 2012).  

 

Moreover, the movement scales as obtained from the composite 

exponential fits (Tab. 4.1a) corresponded to snail size (2-3 mm), but did not match 

with any landscape features like the mean free path (regular: 78 mm, random: 88 

mm, fractal: 155 mm). Thus, foraging strategies of mud snails seem to be 

inherently multi-scale and not solely determined by their environment. This goes 

into the direction of an earlier suggestion that multi-scale composite movement is 

an internal mechanism to approximate Lévy walks (De Jager et al., 2012b; 

Reynolds, 2014). 

   

Furthermore, if fitting truncated powerlaws to the data, powerlaw 

exponents were in the range typical for Lévy walks (1.5 ≤ μ ≤ 2.5), irrespective of 

whether movement occurred on or outside of food patches (Tab. 4.1a, Fig. 4.1c-f; 

see Appendix). In the regular and random landscape, the scaling exponents were 

slightly larger (2.4 ≤ μ ≤ 2.6), indicating that frequent food patch encounter 

truncated long moves (De Jager et al., 2014). These results held true for both sets of 

move lengths distributions and also when we took individual variation in 

movement characteristics into account, i.e. analysed individual tracks separately 

(see Appendix). If contrasting exponentials with (truncated) powerlaws, the 

majority of individual tracks were best fit by a (truncated) powerlaw, but only for 

45.7% of the individuals did the fit range over more than 1.5 orders of magnitude, 

allowing doubt about this method to infer strict Lévy search properties. Hence, the 

results of classical statistical analysis of move length distributions remained 

inconclusive and are open to different explanations, similar to what is found in 

other studies in animal search theory (Edwards, 2011; Jansen, Mashanova & 

Petrovskii, 2012). 

 

 

 



88 
 

 
Figure 4.2: Cluster analysis results compared among the five experimental landscapes. (a) The average 

number of ARS clusters of individual tracks (±SE) is significantly larger for the regular landscape 

(Wilcoxon Tests, p < 0.05). In all other landscapes, snails produced similar numbers of ARS clusters, 

indicating that ARS cluster movement was not only initiated by food encounter. (b) Average cluster area 

sizes and (c) time intervals spent in the clusters for each individual (±SE) reveal no significant 

differences among the landscapes.   

 

Area restricted search clustering 

Comparisons of the average degree of clustering between the homogeneous and 

patterned experimental landscapes revealed only minor differences in the number 

of ARS clusters and no differences in the size of these clusters and the time spent 

within them (Fig. 4.2), indicating that animals alternate intensive-extensive search 

behaviour irrespective of landscape features.  

 

Strikingly, we found strong ARS clustering behaviour in both the 

homogeneous landscapes and in the bare areas of the patterned landscapes (Fig. 

4.3a), strongly suggesting that the observed alternation reflects inherent behaviour 

of the snails, and therefore providing indications for intrinsic multi-scale search 

behaviour. On average, as much as 87-89% of ARS clusters in the random, regular 

and fractal landscapes were observed outside of food patches. Numbers are similar 

for time spent in search clusters outside of food (68-76%). Moreover, in the fractal 

and random landscapes, the size distribution of the ARS clusters outside of food 

patches was well described by a powerlaw (μ = 1.8; Fig. 4.3b, Tab. 4.1b), which is 

again a clear signature of Lévy-like search behaviour (Mandelbrodt, 1983). Also 

time spent in ARS clusters without food encounter was distributed with heavy tails 

in all landscapes (Fig 4.3c), providing a direct parallel to earlier studies on intrinsic, 

multi-scale timing of search tasks (Maye et al., 2007). Hence, we observed a large 

number of size- and time-diverse ARS clusters  away from  food  patches,  providing  
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Figure 4.3: Cluster analysis results in relation to food encounter. (a) Proportion of ARS clusters on bare 

mud (grey) and food patches (green); see examples of search clusters on the right. Error bars are 

standard errors of the proportion of clusters on bare mud. (b) Cumulative inter-patch (i.e. off-food) 

cluster size distributions (tail) grouped by landscape type. Dashed lines indicate the best fit to each data 

set; hyperexponential (k = 3) for the bare and regular landscapes and truncated powerlaw for the fractal 

and random landscapes. (c) Cumulative distributions (tail) of time spent in inter-patch ARS clusters 

grouped by landscape. Dashed lines are best fit hyperexponentials (k = 3) for all landscapes. Powerlaw 

scaling exponents are provided for all distributions; asterisks (only in b) indicate distributions for which 

powerlaw fits were superior to hyperexponentials. 
 

clear experimental evidence that the observed movement behaviour is inherent 

behaviour for our snails. 

 

Reaction to food encounter 

Our observations that snails form search clusters away from food prompts the 

question whether they at all change their movement behaviour when encountering 

food patches. Despite of the prominence of ARS clusters outside of food patches, we  

found that > 90% of the encounters with food coincided with the start of an ARS 

cluster, clearly suggesting behavioural changes when animals encounter a food 

patch. Thus, snails seem to initiate local search both in the absence of food and in 

response to food encounter. 

 

Additional analyses of patch arrival and departure directions showed that 

snails also often change search direction after exploiting food patches (Fig. 4.4). 

Turning angles between entry and exit of a food patch were centred on 180°, 

indicating that snails often reverse search direction within a food patch, exiting at a 

position not far from its entry point. On the contrary, turning angles (with an 

absolute value) below 90° appeared less frequently than at random, suggesting that 

at food encounter the previous course is lost. By strong  turning  behaviour,  snails  



90 
 

 
Figures 4.4 (left): Reorientation at food encounter. Differences of abundances of turning angles between 

directions at food patch entry and exit and random turning angles of similar time lags. Green indicates 

that at food encounter the respective turning angles are more abundant than random, whereas red 

indicates that at the encounter of food patches the angles are less abundant than random. This 

distribution differs significantly from a uniform distribution (Kolmogorov-Smirnov-Test, D=0.51, 

p<0.001). 

Figure 4.5 (right): Survival curves representing the estimated proportion of individuals that have not 

encountered a food patch, yet, for the regular (green), random (blue) and fractal (black) landscapes. 

Landscape type significantly affects time to first encounter (Cox’s proportional hazards model with 

covariates, LR=13.4, p=0.001). 

 

may try to exploit the food patch they just found (Bell, 1991). These results indicate 

that snails, similarly to many other animals (Weimerskirch et al., 2007), react to the 

presence of food patches by initiating area-restricted search, obviously trying to 

exploit them (Turchin, 1998). Thus, our results indicate that encounters  with food  

- characteristic of the composite Brownian walks hypothesis - as well as internal 

triggers – characteristic of intrinsic multi-scale search behaviour - can initiate local, 

area-restricted search in the mud snails. The relative importance of each process 

depends on the density and spatial distribution of food patches.  

 

Search efficiency 

Ecological theory proposes that Lévy walks are an evolutionary adaption of naïve 

foragers to optimise food encounter in specific target heterogeneous conditions 

(Bartumeus et al., 2002; Humphries et al., 2010). Our test of this hypothesis by 

using empirical survival functions of search efficiency (Fig. 4.5) showed that the 

time it took a snail to find food was affected by the food distribution, i.e. landscape 
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type (Cox’s proportional hazards model with covariates, likelihood ratio = 13.4, df = 

2, N = 334, p = 0.0012, Bonferroni corrected threshold p < 0.016). Snails moving on 

fractally distributed food encountered patches faster than snails searching for 

regularly distributed food patches (z = 3.8, p < 0.016), revealing that the search 

efficiency of snails was highest in the experimental landscape most closely 

resembling their natural habitat (Seuront & Spilmont, 2002). Hence, our results 

suggest that multi-scale movement is not only the inherent search strategy for 

mud snails, but also the most efficient for finding food in the snails’ native habitat 

configuration. 

 

General Discussion 

In this work, we have put forward and applied a new experimental approach to test 

for the presence of inherent Lévy-like, multi-scale search behaviour, using mud 

snails that move as uninformed searchers in artificial landscapes and exposing 

them to different types of spatial food distributions. In all of our experiments, even 

in homogeneous landscapes, composite models consisting of multiple exponentials 

provided the best fit to the overall movement, being superior to the fits provided by 

(truncated) Lévy walks. At first glance, this result supports the composite Brownian 

walk hypothesis (Benhamou, 2007), which explains long-tailed movement patterns 

by an alternation of Brownian movement modes triggered by external cues, such as 

food encounter or other environmental heterogeneity (Boyer et al., 2006; 

Humphries et al., 2010). However, the general insensitivity of estimated parameters 

to the differing landscape features, in combination with the observation of clusters 

of area-restricted search in homogeneous landscapes, contradicts this explanation. 

Close inspection of the search characteristics of mud snails in controlled landscapes 

revealed clear signatures of Lévy search behaviour: clusters of area-restricted 

search were found in the (controlled) absence of food encounter, and the clusters 

followed a powerlaw size distribution. Thus, mud snails inherently switched 

between long-distance movement and area restricted search, which reflects a multi-

scale search strategy that is not solely triggered by the landscape. 

 

Our finding of inherent complex movement strategies in mud snails is an 

important addition to the recent set of studies that aim at understanding the 

processes underlying multi-scale search patterns (Hays et al., 2006; Maye et al., 
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2007; Proekt et al., 2012; Sims et al., 2012; Stumpf & Porter, 2012; Seuront & 

Stanley, 2014). Similar to most of those studies, the timing of ARS clustering in 

mud snails showed multi-scale search behaviour also in a homogeneous 

environment, implying intrinsic behavioural control (Maye et al., 2007; Proekt et 

al., 2012; Reynolds, Lepretre & Bohan, 2013). Because of our novel experimental 

setup we could also demonstrate spatial multi-scale foraging behaviour in the 

absence of food encounter (Pyke, 2014). Hence, and in accordance with other 

studies on search movement patterns in the absence of chemical cues (Seuront & 

Stanley, 2014), Lévy or more general multi-scale movement can be an intrinsic 

strategy of searching animals, and does not require landscape heterogeneity or 

other external triggers as explanation. 

 

Still, our results do not contradict the classical perspective on movement 

ecology where animals respond to environmental cues to make foraging decisions 

(Pyke, 1984). Search strategies are per definition affected by encounters, as was 

shown in our study by the high percentage of food encounters coinciding with ARS 

clusters. Thus, observed movement patterns were modified by step truncation and 

increased turning. Analogously, we observed that in the regular and random 

landscapes, where encounter rates were highest, the Lévy exponent was increased 

relative to the bare and fractal landscapes to approach values that are more akin to 

Brownian motion. Thus, our findings contradict the hypothesis that long-tailed 

move length distributions are solely explained by animals adjusting their 

movement in response to food encounter or changing habitat characteristics (Boyer 

et al., 2006; Benhamou, 2007; Humphries et al., 2010). Instead, we find support for 

the earlier stated opposite hypothesis that Brownian motion may emerge from the 

interplay between inherent Lévy search behaviour and ecological encounters, such 

as consumption or interference, that lead to step truncations, especially in resource 

rich or dense communities where ecological encounters are plenty (De Jager et al., 

2014; Reynolds, 2014).  

 

The result that mud snails were most efficient in finding food in fractal 

landscapes concurs well with the insight that diatoms are fractally distributed in 

the natural habitat of our mud snails (Seuront & Spilmont., 2002; Weerman et al., 

2012). However, still the animals were performing the same strategy in the other 
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landscapes. Thus, these animals seem to have inherently followed a search strategy 

that is adapted to their environment, but likely robust enough to cope with other 

conditions, where e.g. food is distributed more homogeneously (Bartumeus & 

Levin, 2008; Raposo et al., 2011; De Jager et al., 2014). This insight supports the 

notion that Lévy and other multi-scale walks might be an evolutionary adaptation 

that provides a survival advantage if the environment is highly diverse (Raichlen et 

al., 2014) or changes (Sims et al., 2014). 

 

One of our most striking findings is that the sizes of clusters of area-

restricted search can be described by powerlaws. To make sure that this is a valid 

conclusion for our data we simulated tracks from truncated Lévy walks as well as 

composite Brownian motion and determined their cluster size distribution (see 

Appendix). The outcomes confirmed that powerlaw cluster size distributions are 

characteristic of Lévy walks. Cluster size distributions of composite Brownian 

motion were, on the contrary, best fitted by hyperexponentials. When disregarding 

fit quality, it was striking to see that we could fit any of the two simulated 

distributions (where parameters of our data set had been used) with either a 

powerlaw or a composite Brownian model with similar parameters: (i) scaling 

exponents (μ = 1.68 for the simulated Lévy  and μ = 1.71 for the simulated 

composite Brownian motion) and (ii) hyperexponential parameters (s1 = 52 mm2, 

s2=128 mm2 and s3 =503 mm2 for the simulated Lévy  and s1 = 36 mm2, s2 = 91 

mm2 and s3 = 538 mm2 for the simulated composite Brownian motion). This 

indicates how very similar Lévy walks and composite Brownian walks are in 

supporting the concept of general multi-scale search behaviour, especially if 

composite Brownian walk parameters are carefully tuned (Reynolds, 2013). Thus, 

we must be especially careful to not only fit distributions but, like we attempted, to 

find other means to test movement behavioural hypotheses (Stumpf & Porter, 

2012; Reynolds, 2012). 

 

Our investigation does not allow to directly address the question about the 

underlying inherent process producing the multi-scale behaviour we found in our 

snails. The animals might follow an internal mechanism that approximates a 

theoretically ideal, random search process (e.g. the Lévy walk) (Reynolds, 2005; 

Reynolds & Bartumeus, 2009; De Jager et al., 2011; De Jager et al., 2012b; Raichlen 



94 
 

et al., 2014) and that was carefully fine-tuned (see also simulations above) as an 

adaptation to optimise search strategies (Reynolds, 2013; Reynolds, 2014). It was 

suggested that nonlinear processes in the brain might provide such a movement 

mechanism (Maye et al., 2007) and that inherent, characteristic macroscopic scales 

might govern them (Proekt et al., 2012). The latter is likely to exist for mud snails, 

because characteristic scales of the composite Brownian fits were similar for all 

landscapes; one scale even related to average snail body size. Another suggested 

mechanism, self-avoidance by inherent cueing (Sims et al., 2014), seems not to 

apply here, as tracks often overlapped, especially in ARS clusters. 

 

The mud snails in this study alternated long moves with clusters of short 

moves and frequent turns even in the absence of external triggers such as food 

encounters. Alternations between movement modes of different scales in the 

absence of external triggers can be considered as a signature for inherent Lévy type 

search strategies. Here we view multi-scale search behaviour as a general 

movement strategy where the animal intrinsically alternates movement steps of 

different sizes, not in the mathematical sense of an observed precise power-law 

movement step distribution. To make a distinction between strict Lévy walks and 

biological implementations of Lévy-like patterns that are  generated with different 

types of heavy-tailed distributions (Pyke, 2014; Bartumeus et al., 2014) and capable 

to optimise search, we propose for the latter to use the term “multi-scale search 

behaviour”. In conclusion, our experiments provide an intriguing perspective on 

the behavioural processes that underlie search in foraging animals and shows new 

routes to explore the search problem combining adequate experimental setups 

with simple quantitative approaches. 
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Appendix: Supplementary Methods & Figures 

Cognitive performance 

Before the main set of experiments, we tested the assumption of limited cognitive 

performance for our system, examining how much information about their 

surroundings mud snails use. In a container with mud we regularly placed 9 mesh 

cells with diatoms. As antennae are the snails’ main sensory organ (Haubois et al., 

2005), we placed snails at four different distances to a food patch based on antenna 

size (2 - 3 mm): 1, 3, 5 and 10 mm (see Fig. 4.6). Then, we observed the snails for 

one hour, determining how many of them found the food patch and how directed 

their movement was. We used three replicate containers, in total observing 80 

snails (20 per initial distance), and computed the proportion of snails hitting the 

patch with the direction they originally chose. Each snail was starved for one hour 

before the 

experiment.  

 

Numbers of snails that encountered the food patch within the hour were 

compared to a random model that relied on simple geometrics and assumed that 

snails either encounter the food patch in a straight line or not. The expected 

proportion of snails finding food was v = arctan(7.5 / d) / π, with d being the 

distance the snail was placed from the food patch.  

 

The experiments revealed that mud snails acted as uninformed searchers. 

We found that the probability of finding a food patch strongly decreased with 

distance (Proportions test, χ2 =16.6, df = 4, p=0.002). When splitting the data by 

distance, the proportions test showed significant differences from random 

encounter for d=1 mm (80% success, p=0.004) and d=3 mm (65% success, p=0.023), 

but not for d=5 mm (40% success, p=0.55) and d=10 mm (25% success, p=0.06). This 

suggests that the snails’ response to food is within 3 and 5 mm, possibly related to 

the antenna size (~3 mm). The limited response range of the mud snails underlines 

their suitability for our experiments on random search behaviour. 
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Figure 4.6: Setup and results of the cognitive performance experiment. (a) On each side of a square food 

patch snails were placed in a distance of 1, 3, 5, or 10 mm, respectively. (b) A mud snail and its antennae 

length. (c) Number of snails out of the 20 snails per initial distance that reached the food patch directly 

(green bars). The white, dotted lines are the expected numbers of the random model (see main text). 

  

 

Experimental landscapes 

 

 
Figure 4.7: Different landscape patterns with the track of one snail. The red dot indicates the starting 

position. (a) Sediment fully covered with diatoms, (b) “regular” landscape, (c) “random” landscape, (d) 

“fractal” landscape, (e) bare mud. 
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Pooled distribution fits 

 
Figure 4.8: Pooled move length distributions (in mm; black dots) for (a-e) the 2D segmentation method 

with 45 degree threshold, (f-k) the x-axis displacements and (l-p) the y-axis displacements of the 1D 

segmentation method (see main text). The displacements are of tracks in the homogeneous (a,f,l), 

regular (b,g,m), random (c,h,n), fractal (d.i.o) and bare (e,k,p) landscape. The dark green, purple, yellow 

and brown lines indicate the truncated power law, hyperexponential (k = 2), hyperexponential (k = 3) 

and exponential fits. Powerlaw exponents are provided, even if hyperexponential (k = 3) is the best fit for 

all distributions. Note also the distributions of lengths of moves within (green dots) and outside of foot 

patches (red dots) that overlay the black dots in the bare and homogeneous landscapes. 
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Individual distribution fits 

It can be argued that pooled move length distributions might appear as power laws 

due to individual variation in movement characteristics. We tested for this 

possibility by analysing each individual track separately, again using the 2D and 1D 

segmentation methods in parallel to determine moves (see main text). However, we 

considered it not sensible to fit hyperexponential distributions here, because of the 

small amount of data. Therefore, we compared (truncated) power law and 

exponential fits. 

 

Independently of the segmentation method, the majority of tracks (54-

87%) were most compliant with truncated Lévy walks, especially in the fractal 

landscape (see Table 4.2). Thus, individual mud snail movement can clearly be 

long tailed (i.e. contains many long distance displacements) and multi-scale. Note 

that the move distributions extracted with the 2D method is more conservative 

than the 1D method, as more tracks are fitted by exponentials. 

 

Tracks that were best fit by a (truncated) power law showed similar 

exponents, the mean power law exponents corresponding to those of the fits to the 

pooled data sets. Individual variation in exponents, however, is great and a 

considerable proportion of snail trajectories are best fit by exponential move length 

distributions (100 - %PLbest fit, see Table 4.2b). For each landscape We provide a 

selection of tracks and their move length distributions (Fig. 4.9); the individuals 

were selected for longer, robust tracks (track length was not related to the fit) and a 

variability of fits as present in the whole data set. 
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Table 4.2: Properties of the pooled move length distributions for each landscape. (a) Numbers of 

individual tracks used for each landscape (# idv tracks) and number of moves (# moves) pooled over 

those 116 longer individual tracks in the respective landscape. We provide the minimum and maximum 

move length (all in mm), xmin and xmax, obtained by optimisation and used for the fits. 𝑥̃ is the median 

move length. (b) 𝜇̅ idv indicates the mean (truncated) power law exponent of move length distributions of 

individual tracks per landscape. The percentage of individual tracks for which the truncated power law 

was the best fit is given by % TPL best fit. These values can be compared with Table 4.1 in the main text. 

Landscape Bare Fractal Random Regular Homogeneous 

(a) # idv tracks 22 24 26 24 20 

       # moves 6741 7815 9281 8703 9957 

       xmin 1.1 1.2 1.2 1.3 1.4 

       xmax 230.5 335.5 1539.9 165.3 168.3 

       median x 2.2 2.3 2.0 2.3 2.4 

(b) mean μ  2.26 2.45 2.61 2.65 2.45 

      % TPL best fit 59.1 66.7 65.4 54.2 45.0 

 

Table 4.3: Comparison results of individual best fits of move length distributions extracted with the 1D 

method (x-axis as well as y-axis) and 2D method  (threshold 45 degrees). (a) Numbers of tracks that show 

the same best fit model for the x-axis and y-axis distribution of the 1D method. Theoretical results have 

shown earlier that they should be identical (Humphries et al. 2014). This is the case in 83.6% of the 

cases. (b) and (c) show a comparison of the number of individual tracks with the same best fit for the 2D 

method and one of the 1D method distributions. They coincide in 72.4% and 83.6% of the cases, 

respectively. Note that for most cases with different results, the 2D method is more conservative, 

showing exponential fits rather than powerlaws. 

a                                               1D y-axis 
 
1D x-axis 

 Powerlaw Exponential 
Powerlaw 76 13 
Exponential 6 21 

b                                               2D 45 degree 
 
1D x-axis 

 Powerlaw Exponential 
Powerlaw 64 25 
Exponential 7 20 

c                                               2D 45 degree 
 
1D y-axis 

 Powerlaw Exponential 
Powerlaw 67 15 
Exponential 4 30 
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Figure 4.9: Movement tracks (left) and move length distributions (in mm; right, black dots) of three 

single individuals each in the five different landscapes: bare (a-c), fractal (d-f), random (g-i), regular (k-

m) and homogeneous (n-p). In the movement tracks food encounters are noted as green dots. For each 

presented track we show the 2D move distribution as well as the 1D x-axis and y-axis distributions (see 

main text); note their similarity. In each distribution we provide the best fit (exponential or (truncated) 

powerlaw), and add the distribution of moves on food (green dots) and away from food patches (red 

dots). 
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Figure 4.9 contiunued. 
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Figure 4.9 continued. 
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Figure 4.9 continued. 
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Figure 4.9 continued. 
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Tracks of unpainted snails 

In a preliminary analysis we have followed three snails without paint (nail polish) 

marking, to get an idea of a possible effect of the paint on snail movement patterns. 

Their tracks and move length distributions (see Fig. 4.10) indicate that the snails 

with and without paint treatment move similarly. We did not perform a 

comparative test, because the power of the test would be low (i.e., large probability 

for a type II error); in other words, failure to reject the null hypothesis (of no 

difference in movement patterns between painted and unpainted snails) would 

anyhow not convincingly indicate that it was valid. However, all the snails in our 

main trials are treated similarly and are thus comparable. How far their behaviour 

is generalizable to wild snails is not the main point here and remains to be further 

analyzed in a follow-up study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



106 
 

 

 
Figure 4.10: Movement tracks (left) and move length distributions (in mm; right, black dots) of three 

single individuals without paint in the homogeneous landscapes: homogeneous (a) and bare (b,c). In the 

movement tracks food encounters are noted as green dots. For each presented track we show the 2D 

move distribution as well as the 1D x-axis and y-axis distributions (see main text); note their similarity. 

In each distribution we provide the best fit (exponential or (truncated) powerlaw), and add the 

distribution of moves on food (green dots) and away from food patches (red dots). Compare with Figure 

4.9. 
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Brownian Bridge clusters 

 

 
Figure 4.11: Concept of the determination of local search clusters with the Brownian Bridge Kernel 

Method. (a) Movement track of one snail. (b) Brownian Bridge probability/density of the track (red-

yellow-white gradient: high - low density, grey: zero density) and the selected 68% region of local search 

clusters. (c) Snail positions derived to local search (green dots) and global search (blue dots). 

 

Clusters of simulated tracks 

To confirm that cluster size distributions created by our BBKM algorithm (in line 

with the “Levy dust” concept) indeed are an indicator for Lévy walks and how they 

differ from composite Brownian walks, we evaluated the algorithm.  

 

Using the Lévy exponent that was fit to the move length distribution of 

steps outside of food patches on the fractal landscape (µ =2.19) we simulated 100 

walks, each of length 2000 (according to our data) with random turning angles. To 

test if cluster sizes deviate if created by a composite Brownian walk, we simulated 

100 such walks using the parameters that had been fit to the moves without food 

encounter on the fractal landscape. 

 

From both sets of tracks we calculated local search cluster size areas (see 

above). Results revealed that local search cluster size distributions of the simulated 

truncated Lévy walks are best fit by a truncated power law (Figure 4.12a; wTPL = 1). 

This is in accordance with conclusions from data analysis and the “Lévy dust” idea. 

The power law exponent is only somewhat smaller than that estimated from the 

data set.  

On the other hand, the cluster size distribution of the simulated Composite 

Brownian walks follows a hyperexponential distribution (Figure 4.12b; wCBW3 = 1). 

This is not in accordance to the data, but indicates how very similar Lévy walks and 

 



108 
 

 

 
Figure 4.12: Cluster results of data simulated using parameters as fit to the distribution of move lengths 

that do not incorporate food encounter in the fractal landscape. (a) Cumulative distribution of cluster 

sizes (in mm2; black dots) in terms of minimum convex polygon area, determined from data simulated 

from a truncated powerlaw with µ = 2.19. Lines indicate exponential (blue line), truncated power law 

(pink) and hyperexponential with three terms (light blue) fits. In terms of maximum likelihood, the 

truncated powerlaw is the best fit. (b) Distribution of cluster sizes calculated from sample data set 

determined from a hyperexponential distribution with parameters: p1=0.119, p2=0.035, λ1=0.471, λ2=0.085, 

λ3=1.955. In this case a hyperexponential is the best fit. 

 

composite Brownian walks are. Thus, the concept of multi-scale search behaviour to 

approximate the optimal Lévy search is supported.  

 

It is striking that both simulated data sets’ cluster size distributions are fit 

with (i) truncated power laws of similar scaling exponents (see Figure 4.11) and (ii) 

hyperexponentials of almost the same scales (s1=38 mm2, s2=120mm2 and 

s3=1000mm2). The first scale s1 may be related to snail size or turning behaviour, 

but the others have no connection to measures of the experiment. Thus, we propose 

them to be intrinsic scales that are optimal for the given landscape conditions. 
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5 
Why mussels stick together:  

self-organization affects the evolution of 

cooperation 

 

 

 

 

 

 

 

 

Monique de Jager, Franz J. Weissing & Johan van de Koppel 



110 
 

Abstract 

Cooperation is an important driver for the persistence of populations in stressful 

environments. Yet, when neighbouring individuals provide sufficient help, less 

cooperative individuals may profit from their behavior and invade in the 

population. Using self-organizing mussels as our model template, we show that 

active aggregation into spatially structured populations can affect the evolution of 

cooperativeness. Using an individual-based model of mussel bed pattern formation, 

we demonstrate that active movement into the labyrinth-like patterns that we 

observe in natural mussel beds results in populations where individuals have an 

intermediate number of neighbours within cooperation distance. With an 

evolutionary model we then show that this intermediate number of neighbours can 

maximize the investment in between-mussel attachments in the population. Our 

results suggest that active movement of organisms into spatially structured 

populations can affect the evolution of cooperativeness. 
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Introduction 

Cooperation between neighbouring individuals is often essential for survival in 

stressful environments (Bertness & Callaway, 1994; Callaway & Walker 1997; 

Holmgren et al., 1997; Stachowicz, 2001). Organisms ameliorate their environment 

locally, for instance by providing shade or by drawing moisture and nutrients 

towards themselves and close neighbours (Schlesinger et al., 1996; Aguiar & Sala, 

1999), which allows others to survive in an otherwise hostile world. To what extent 

cooperation evolves in a population seems to depend on the nature and intensity of 

interactions between individuals (Doebeli & Hauert, 2005; West, Griffin, & Gardner, 

2007; Van Dyken & Wade, 2012). When cooperation is costly and the recipients can 

reap the benefits of cooperation without helping others in return, cooperation by 

neighbouring organisms can be exploited by less cooperative individuals; an 

individual that profits from its neighbours’ cooperative behaviour can afford to 

invest less in cooperation itself. The number of cooperating neighbours an 

individual has likely determines the effectiveness of its cooperation strategy and 

may affect the degree of cooperativeness that evolves within a population 

(Vainstein & Arenzon, 2001; Zhang et al., 2005; Ohtsuki et al., 2006; Hui & 

McGeoch, 2007).  

 

 Systems as diverse as mussel beds, coral reefs, marsh tussocks, tidal 

wetlands, peat lands, arid ecosystems, and ribbon forests are highly structured in 

space due to the interplay between local facilitation and long-range inhibition, for 

instance by depletion of nutrients (Klausmeier, 1999; Mistr & Bercovici, 2003; 

Rietkerk et al., 2004a; Rietkerk et al., 2004b; Van de Koppel et al., 2005; Van de 

Koppel & Crain, 2006; Rietkerk & Van de Koppel, 2008; Van de Koppel et al., 2008; 

Eppinga et al., 2009). In these systems, the number of potentially cooperating 

neighbours depends on the spatial scale and distribution pattern of the population. 

In many systems, the spatial pattern results from the active movement of 

organisms (Theraulaz et al., 2003; Jeanson et al., 2005; Hemelrijk & Hildenbrandt, 

2012; Van de Koppel et al., 2008; De Jager et al., 2011). Accordingly, the movement 

strategies of these organisms can indirectly affect the number of neighbours an 

individual will encounter. In situations where costs and benefits of facilitation 

depend on the availability and density of local neighbours, the movement strategy 



112 
 

therefore affects the evolution of facilitation. It is, however, unknown under what 

circumstances movement promotes or hampers the evolution of cooperation. 

  

An example of active pattern formation can be found in intertidal mussel 

beds. Mussels self-organize into large-scale labyrinth-like patterns (Van de Koppel 

et al., 2005; Van de Koppel et al., 2008). They use their foot to aggregate into a 

group of conspecifics after wide dispersion by the currents during the larval stage 

(Maas Geesteranus, 1942). When aggregated, mussels facilitate each other by 

attaching byssus threads (a glue-like substance) to the shells of conspecifics that are 

within reach. These attachments decrease dislodgement chance and predation risk 

for both the attaching mussel and the one receiving the byssus thread (Hunt & 

Scheibling 2001; Hunt & Scheibling 2002). Mussels that are sufficiently affixed by 

neighbours do not need to create attachments themselves and can therefore profit 

from having a lower level of cooperativeness. Through active aggregation into 

mussel clumps with various densities, mussels can modify the number of 

neighbours within their attachment range. By self-organizing into the labyrinth-

like patterns that are characteristic for intertidal mussel beds, mussels attain an 

intermediate number of neighbours, which lies between the few neighbours within 

attachment distance in scattered distributions and many neighbours in dense 

mussel clumps.  

 

In this paper, three questions regarding cooperation in mussel beds will be 

addressed. First, we investigate how the aggregation strategy of mussels affects the 

spatial pattern and, in particular, the number of neighbours available for 

cooperation. Aggregation in mussels typically leads to the formation of a spatial 

pattern consisting of regularly spaced strings and clumps (Van de Koppel et al., 

2005; Van de Koppel et al., 2008). This self-organized pattern is likely related to the 

number of neighbours that mussels experience, ranging from few neighbours in 

scattered distributions to many neighbours in dense clumps. We tested this 

hypothesis using an individual-based model (IBM; de Jager et al., 2011; de Jager et 

al., 2014). Second, we examine how the number of neighbours affects the 

evolutionarily stable degree of cooperativeness with an adaptive dynamics 

approach (Geritz et al., 1998). Here, cooperativeness corresponds to the tendency of 

attaching byssus threads to neighbours (e.g. the ‘attachment tendency’). Building 
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on the fundamental assumption that the spatial pattern relates to the average 

number of neighbours that a mussel can attach its byssus threads to, investigating 

how the number of neighbours affects the evolution of the attachment tendency of 

mussels gives us insight into whether and how aggregation strategies promote or 

hamper cooperation. Third, we study the effect of harshness of the environment, 

which is likely to influence the results of our evolutionary model. How well a 

mussel is attached to its neighbours influences its survival under stressful 

conditions. We examine the evolution of between-mussel cooperation over a range 

of environmental conditions. Furthermore, we take into account that 

environmental stress likely differs substantially between generations, which may 

further affect evolutionary processes. 

   

Methods 

An individual-based model of self-organized patterning 

We modelled the effect of individual aggregation strategies (the ‘settlement 

threshold’) on the formation of mussel beds with an individual-based model (IBM). 

The self-organized pattern in mussel beds is a compromise between reducing wave 

stress and predation risk (requiring dense aggregations) on the one hand and 

minimizing food competition (requiring low densities on a larger spatial scale) on 

the other (Van de Koppel et al., 2005; Van de Koppel et al., 2008). Hence, mussels 

move around until they find a location where the number of neighbours within 

attachment distance is high enough to decrease dislodgement risk while the 

mussel density over a longer range is sufficiently low to decrease competition for 

algae. We developed an individual based model that describes pattern formation in 

mussels by relating the chance of movement to the short- and long-range densities 

of mussels, following De Jager et al. (2011). We consider 1600 circular individuals 

with a diameter of 1 cm that are initially spread homogeneously on a 25 x 25 cm 

surface. In each of the 500 time steps within a simulation, all individuals get a 

chance to move in random order. Whether a mussel moves or not depends on the 

density of mussels within the local attachment range of 1.1 cm ø (i.e. the ‘local 

density’) and the density of mussels within the larger, 3.3 cm ø competition range 

(i.e. the ‘long-range density’); a mussel moves when the local density is lower than a 

certain settlement threshold (which we will vary below) and/or when the long-
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range density is higher than 0.7 individuals/cm2. These parameter values were 

estimated using a regression analysis of experimental data (Van de Koppel et al., 

2008; De Jager et al., 2011). We modelled movement of individuals to correspond to 

natural mussel movements, using a heavy-tailed step length distribution (a Lévy 

walk with μ = 2; De Jager et al., 2011), where steps are made in random directions 

and their lengths are drawn from a power law distribution. A mussel ends its step 

prematurely when it encounters a conspecific (De Jager et al., 2014). In our model, 

mussels cooperate after pattern formation (and not during); therefore the 

attachment of byssus threads does not impair mussel movement. To examine the 

relation between the number of neighbours within the facilitation range and the 

spatial structure that emerges in the self-organized mussel bed, we vary the 

settlement threshold, e.g. the minimum mussel density required for local 

aggregation. We simulated mussel bed formation for a range of settlement 

thresholds and plotted the emerged spatial patterns. We calculated the average 

number of neighbours ± SE within attachment range for each simulation.  

 

A model of the evolution of between-mussel cooperation  

To investigate the evolution of cooperation, we make two plausible assumptions on 

how the survival probability and the fecundity of a mussel is affected by its 

attachment tendency A and on the number n of neighbours within attachment 

distance. The attachment tendency A (0 ≤ A ≤ 1) corresponds to the probability of 

attaching a byssus thread to any given neighbour. Hence, a mussel with 

attachment tendency A and n neighbors attaches itself on average to n · A of its 

neighbours. Mussels, however, do not only make attachments themselves, but also 

receive attachments from other mussels. Hence, the total number of attached 

neighbours N depends on both a mussel’s own production of byssus threads (n · A) 

and on the number of attachments produced by its neighbours. A mussel can be 

attached to a neighbour by its own byssus thread, by the byssal attachment of its 

neighbour, or by both; it stays disconnected from the neighbour if both do not 

attach to one another. Thus, we can calculate the probability that two mussels are 

attached as 1 minus the probability that they remain disconnected. Given that a 

mussel has n neighbours, an attachment tendency A, and neighbours with an 

attachment tendency A’, the expected total number of attached neighbours is given 

by: 
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Figure 5.1: We assume that survival is a sigmoid function of the number of attached neighbours. The 

parameter E corresponds to that value of N for which the survival probability is 0.5. Intuitively, E may 

be viewed as a measure of the harshness of the environment: under mild conditions (small E), survival is 

already high for small values of N, while under harsh conditions (large E) survival is low unless mussels 

are attached to a large number of neighbours. 

 

 𝑁(𝐴, 𝐴′) = 𝑛 ∗ [1 − (1 − 𝐴′) ∙ (1 − 𝐴)].     (5.1) 

 

We consider this total number of attached neigbours to be an important 

determinant of an individual’s survival probability. We assume that survival is high 

when a mussel is attached to many neighbours and is much lower when a mussel 

has only few attached neighbours: 

 

 𝑆(𝐴, 𝐴′) = [1 +  𝑒−𝜆(𝑁(𝐴,𝐴′)−𝐸)]−1.     (5.2) 

 

Here, E is the number of attached neighbours needed for the survival chance to be 

50 percent and λ determines the steepness of the logistic, S-shaped function (Fig. 

5.1). Throughout, we will assume that survival for mussels attached to zero 
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neighbours is 1% (S0 (0) = 0.01). This imposes a constraint on the parameters λ and 

E, essentially reducing the number of parameters to one.  

 

We further assume that the production and attachment of byssus threads 

has fecundity costs and consider a linear relation between fecundity and the 

average number of byssus threads produced: 

 

 𝐹(𝐴) = 1 − 𝑐 ∙  𝑛 ∙  𝐴.      (5.3) 

 

Here, c denotes the costs per cooperation with a neighbour (Nicastro et al., 2009).  

 

To study the evolution of the attachment tendency, we use an adaptive 

dynamics approach (Geritz et al., 1998). To this end, consider a monomorphic 

resident population with attachment tendency A’, in which a mutant with strategy 

A arises. Whether this mutant invades the resident population depends on its 

relative fitness (W). For simplicity, individuals in the model are semelparous. We 

assume that fitness relates to the expected lifetime reproductive success, which 

corresponds to the product of the probability to survive (S) until reproduction and 

expected fecundity (F). Hence, the relative fitness of a mutant with attachment 

tendency A is given by:  

 

  𝑊(𝐴, 𝐴′) =  
𝑆(𝐴, 𝐴′)∙𝐹(𝐴, 𝐴′)

𝑆(𝐴′, 𝐴′)∙𝐹(𝐴′, 𝐴′)
.      (5.4) 

 

If W(A,A’)  > 1, the mutant genotype has larger fitness than the resident genotype 

and can increase in relative frequency. Assuming asexual reproduction and 

mutations of small effect, the invasion of a mutant when rare typically guarantees 

that the mutant will spread to fixation, hence replacing the former resident (Geritz 

et al., 1998). Through a series of consecutive gene-substitution events, the 

attachment tendency will evolve to an Evolutionarily Singular Strategy A* 

(Dercole & Rinaldi, 2008). Such a strategy is evolutionarily stable if no mutant 

strategy can invade a population of individuals using strategy A*. An 

Evolutionarily Singular Strategy A* is convergence stable if those mutants 

successfully invade a given resident strategy A’  that is closer to A* (Geritz et al., 

1998). 
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Figure 5.2: Spatial patterns and neighborhood sizes generated by the individual-based simulation model. 

(Bottom) By increasing the settlement threshold in the model from low (left) to high (right) values, the 

spatial distribution of mussels changes gradually from scattered to labyrinth-like to clumped. (Top) In 

line with pattern formation, the average number of neighbors in the attachment range increases as well 

(bars indicate SE).  

 

The parameter E in eq. 5.3 represents environmental conditions, such as 

wave stress and predation risk. In harsh environments, E will take on a larger value 

than in benign environments. We will  examine  the  evolution  of  attachment for 

a range of environmental conditions. Furthermore, environmental conditions are 

likely to vary between generations. Hence, we will also investigate the effect of 

alternating environments on the evolution of cooperation.  

 

Results 

Spatial patterning relates to number of neighbours 

As a first step, we demonstrate that the aggregation strategy of mussels strongly 

affects their spatial distribution as well as the number of neighbours a mussel can 

interact with. To this end, we systematically changed the settlement threshold of 

the mussels in a population. Our individual-based simulations reveal that a 

scattered distribution results when the settlement threshold is low, that a labyrinth-

like pattern emerges when the settlement threshold is intermediate, and that dense 

clumps are formed when the settlement threshold is  high (Fig.  5.2  Bottom).  The  
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Figure 5.3: (A) Evolution of the attachment tendency is influenced by the number of neighbours within 

attachment distance and the level of environmental stress. (B) Investment in the number of attachments 

created to neighbouring individuals is hump-shaped and is for moderate stress levels maximized in the 

labyrinth-like patterns that we observe in nature (n = 8).  

 

average number of neighbours increases with the degree of aggregation (Fig. 5.2 

Top). For the remainder of this paper, we will use the following neighbourhood 

sizes (n) to represent the different spatial structures: n = 6 for scattered 

distributions, n = 8 for labyrinth-like patterns, and n = 12 for dense mussel clumps. 

Because natural mussel beds are often labyrinth-like, we specifically concentrate on 

how an intermediate number of neighbours (n = 8) affects the evolution of the 

attachment tendency A.  

 

Evolution of the attachment tendency A 

By actively aggregating into spatially structured mussel beds, mussels are able to 

modify the number of neighbours they can cooperate with and may thereby also 

affect the level of cooperativeness that evolves in the population. For three 

different environmental conditions (benign (E = 2), moderate (E = 6), and stressful 

(E = 10)), Figure 5.3A shows how the evolutionarily stable attachment strategy A* 

depends on the neighbourhood size n. In all three cases, the evolved level of 

attachment tendency decreases when increasing the number of neighbours. The 

differences   in   how   the   number  of   neighbours  affects  the  evolution  of  the  
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Figure 5.4: Evolution of attachment tendency when environmental conditions differ between 

generations and vary according to a normal distribution. (A) The evolved attachment tendency and (B) 

the number of attachments created per individual for a range of numbers of neighbours, given three 

different variances of the stress level distribution. The solid line indicates the case where environmental 

stress is normally distributed with little variance (μ = 6, σ = 1); variance is increased for the two dashed 

lines (σ = 3 and σ = 5, respectively).  

 

attachment tendency in Figure 5.3A illustrates that environmental conditions are 

of key importance in this evolutionary process. Especially in benign environments, 

active aggregation into spatially structured populations can have substantial effects 

on the attachment tendency that evolves. 

 

Interestingly, the number of attachments created when cooperating at the 

evolved level A* is maximized at intermediate numbers of neighbours (n = 8) for 

intermediate levels of environmental stress (Figure 5.3B). Though the attachment 

tendency provides us with a measure of cooperativeness, the costs and benefits of 

cooperation are better represented by the average number of attachments made to 

neighbouring individuals (n · A*). Investment in attachment peaks at different 

numbers of neighbours for different levels of environmental stress. In moderate 

environments, self-organization into a labyrinth-like pattern, which is characterized 

by intermediate numbers of neighbours (n = 8), can yield an evolved attachment 

tendency that maximizes the number of attachments made. Note that the number 

of attachments created can never be larger than n. Interestingly, A·n in Figure 5.3B 
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first increases more or less linearly with n before levelling off. Given the 

constraints of the system, the maximal number of attachments is realized for low 

numbers of neighbours. In that sense, cooperativeness is maximized at low values 

of n. Nevertheless, investment in attachments is maximized in labyrinth-like 

patterns or dense mussel clumps, depending on environmental conditions.  

 

Changing environmental stress levels 

Because mussels disperse over a wide range as larvae before settling on a mussel 

bed, environmental conditions are most likely different between generations. 

Adaptation of between-mussel cooperation to a particular stress level is therefore 

difficult and evolution of cooperation becomes more challenging than described 

above. In Figure 5.4, we considered the three situations where the environmental 

stress level a generation encounters is drawn from a random distribution (μ = 6) 

with low (σ = 1), intermediate (σ= 3), and high (σ = 5) variation in stress, but the 

results below are also valid for stress level distributions with higher or lower μ.  

When variation in E is high, the evolutionarily stable attachment tendency is very 

low for all n (Fig. 5.4A), as is the number of attachments created (Fig. 5.4B). 

Highest levels of between-mussel cooperation evolve when mussels have few 

neighbours and variation in environmental stress is low. With a mean stress level μ 

= 6, little variation in environmental stress gives rise to a hump-shaped relation 

between the number of neighbours and the average number of attachments a 

mussel produces, which is quite similar to the situation without variation in 

environmental conditions between generations (Figure 5.3). Increased variation in 

environmental stress between generations causes lower attachment tendencies to 

evolve than when conditions are more stable. 

   

 Inter-generational variation in environmental stress implies that the 

attachment tendency that evolves when environmental stress differs between 

generations is either lower or higher than the attachment tendency that would 

evolve when conditions throughout all generations remains constant. For instance, 

when stress follows a normal distribution with μ = 6 and σ = 1, the evolved 

attachment tendency is approximately 0.82, 0.69, and 0.43 in scattered distributions 

(n = 6), labyrinth-like patterns (n = 8), and dense clumps (n = 12), respectively, 

regardless of the environment met by  the current  generation. When a mussel bed  
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Figure 5.5: Evolution of between-mussel cooperation for three spatial population distributions and a 

range of environments, when environmental stress differs between generations (dashed lines) or 

remains constant (solid lines). The attachment tendencies that evolved in both constant and changing 

environments in scattered beds (A), labyrinth-like patterns (B), and dense clumps (C). (D-F) The average 

number of attachments created by an individual per spatial pattern and stress level. Here, we used the 

normally distributed stress levels (μ = 6, σ = 1) to model evolution of between-mussel cooperation in 

inter-generational variation in environmental stress.  

 

emerges in a benign environment, the mussels  are  attached  to  more  neighbours 

than minimally needed for survival (Fig. 5.5D-F). However, mussel beds in harsh 

environments can easily get dislodged, as the evolved attachment tendency results 

in too few attachments than required for adequate mussel survival. Especially in 

dense clumps, the attachment tendency that would have evolved if all generations 

had experienced high environmental stress is substantially higher than the 

attachment tendency that evolves when generations experience different stress 

levels (Fig. 5.5C). In this sense, dense clumps are more risk-prone than scattered 

distributions. Overall, the level of cooperativeness that evolves in self-organized 

mussel beds appears to depend on the range and frequency of occurrence of 

environmental conditions and on the spatial pattern that is generated within the 

mussel bed. 
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Discussion 

Cooperation is often a necessity for survival in harsh environments and is therefore 

found in many species. Organisms utilize a multitude of supporting traits and 

behaviours, such as local dispersal, reciprocity, and punishment, to maintain high 

levels of cooperation (West et al., 2007). Here, we demonstrate a new behaviour that 

can promote the evolution of cooperation: active movement into spatial patterns. 

Though earlier studies have highlighted the importance of spatial structure in 

locally dispersing populations to improve relatedness amongst cooperating 

individuals (Ohtsuki et al., 2006; Santos et al., 2006; Masuda 2007), we demonstrate 

that spatial patterning can also promote cooperation in the absence of kinship 

between neighbours. Our theoretical analysis reveals that in intertidal mussels – 

where individuals disperse over a wide range – aggregation into spatial patterns 

stimulates the evolution of cooperation, despite of a complete absence of 

relatedness among the cooperating conspecifics. Yet, because mussels benefit from 

any attachment of byssus threads with neighbouring individuals, some degree of 

between-mussel cooperation evolves in any type of mussel bed, irrespective of the 

spatial pattern. Our analysis, however, shows that cooperative interactions by 

formation of byssal attachments can be maximized when the mussels form a self-

organized, labyrinth-shaped pattern, where they interact with an intermediate 

number of neighbours. From this study and others (Ohtsuki et al., 2006; Santos et 

al., 2006; Masuda 2007), we can conclude that spatial patterning can substantially 

influence the degree of cooperativeness that evolves in a population, both in 

species with local and long-range dispersal. 

  

From a game-theoretical point of view, spatial population structure is 

generally thought of as the consequence of local dispersal of offspring (Nowak & 

May, 1992). As local dispersal initiates spatial heterogeneity in a population, related 

individuals cooperate more amongst themselves than in mixed populations. 

Because of the advantages of cooperating with kin (i.e. inclusive fitness), 

cooperativeness can readily evolve in viscous populations where offspring remains 

local. Spatial population structure, however, is not necessarily the consequence of 

local dispersal; other factors, such as habitat suitability, predation, and food 

availability, might affect spatial population structure, also in populations with wide-

ranging offspring dispersal. Recent studies have let go of the assumed link between 
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local dispersal and spatial structuring, but yet maintain using local dispersal in 

their models of cooperation in network-structured populations (Santos & Pacheco, 

2005; Ohtsuki et al., 2006; Santos et al., 2006; Masuda 2007). Our work suggests that 

this assumption is not essential. We demonstrate that, despite of offspring 

dispersing over a wide range, spatial population structure can substantially increase 

the amount of cooperativeness that evolves in a population, depending on 

environmental conditions. Our work corroborates with a number of studies 

stressing that cooperative species exist that have spatially structured populations, 

but are genetically well-mixed (Godfrey & Kerr, 2009) and which act out of an 

innate cooperative strategy. Hence, our study highlights the importance of spatial 

structure and active aggregation for the evolution of cooperation even in 

populations where dispersal is not localized.  

 

Self-organized ecosystems are known for their characteristic large-scale 

spatial patterns, including spots, stripes, labyrinths, and gaps, which are partly 

caused by local cooperation (Rietkerk & Van de Koppel, 2008). Kéfi et al. (2008) 

showed that cooperation in self-organized arid ecosystems can only be sustained 

when plants disperse locally. If these plants would disperse over a wide range, 

uncooperative individuals could invade in the population, causing the entire 

system to collapse. In our paper, we show that this conclusion may not be general 

for all self-organizing populations. In mussel beds, local dispersal is not necessary 

for the evolution of cooperation. Although cooperation in self-organized arid 

systems and mussel beds show similarities – for instance, cooperation in both 

systems resembles a Snowdrift Game (Doebeli & Hauert, 2005) – the main 

difference lies in the mobility of the individuals. In arid systems, plants cannot 

move around, and hence have to accept the neighbourhood they encounter, as they 

are dependent on the location to which their seeds disperse. When plant density 

drops because of a decrease in cooperativeness, plants have fewer neighbours to 

cooperate with. As life with less neighbours is even tougher, less individuals 

produce offspring, causing the eventual collapse of the system. In mussel beds, a 

similar number of neighbours can be maintained throughout generations, despite 

fluctuations in mussel density. Hence, because of their mobility, mussel 

populations can be maintained at low levels of cooperation, which would cause 

evolutionary suicide in arid systems. This suggests that cooperation can more easily 
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be sustained in ecosystems with actively aggregating organisms, where local 

neighbourhood size is to a certain extent independent from population density.  

 

Variability in environmental conditions can have substantial consequences 

for how well a population is adapted to its environment. The level of 

cooperativeness that evolves when environmental conditions are continually 

changing between generations can be too little in highly stressful environments, 

resulting in the dislodgement of entire mussel beds after settlement in the wrong 

locations. In most intertidal ecosystems, an extensive range of environmental 

conditions can be encountered at any time, from very benign habitats that also 

provide little food, to very harsh conditions where food is often abundant. 

Moreover, mussel offspring is likely to reach all of these habitats, as is witnessed by 

the high availability of mussel spat on artificial settlement structures. This implies 

that the offspring of any mussels can spread itself over different habitats where a 

harsher environment implies a better food supply. For simplicity, we did not take 

this correlation between environmental stress and food availability into account; 

further research may show whether the inclusion of this relationship will give 

different results. It is likely that the levels of cooperation that are found in real-

world mussels reflects an adaptation to the habitat where they can generate the 

highest number of offspring, taking into account the availability of the habitat in 

the overall area. 

 

For the sake of simplicity, we adopted a number of simplifying 

assumptions that do not agree with the conditions that mussels, or any real-world 

organism, would encounter. In our model, we used semelparous individuals, 

whereas real mussels can survive for many years and reproduce at least once a 

year. In mussels, reproductive output per unit of biomass increases with age, as 

growth takes an ever smaller part of energy. Under most circumstances, our 

simplification has little consequences, yet it might become important in temporally 

variable environments. We assumed a fixed self-organizing behavior within each 

and throughout generations; in each simulation of our IBM, all individuals used 

the same set of rules, including the settlement threshold, to move into a spatial 

pattern. This is an unrealistic assumption for several reasons. For example, 

generations are likely to differ in initial overall density; a scattered population in a 
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dense mussel bed will result in a higher number of neighbours within attachment 

distance than in less dense but patterned beds. Especially for small and large 

settlement thresholds, a stable population structure may not be reached due to too 

high or too low overall mortality rates, respectively, hence creating differences in 

mussel densities. Furthermore, individuals might differ in their self-organizing 

strategy; though some are aggregating in dense clumps, others may be 

strategically moving away from dense mussel clusters. The settlement threshold 

used in our IBM may be a trait that is under evolutionary selection itself and might 

even jointly evolve with cooperation. Because we were interested in how spatial 

patterning affects the evolution of cooperation, we stayed with our assumption of a 

fixed aggregation behavior within and between generations. 

  

Our study demonstrates that active self-organization can have substantial 

consequences for the degree of cooperation that evolves in a population. Inversely, 

self-organized spatial patterns have been described in a wide range of ecosystems, 

and many of these studies highlight the importance of cooperative interactions for 

the formation of these spatial patterns. In patterned arid bush lands, for instance, 

plants promote the infiltration of water into the soil, facilitating other plants 

(Klausmeier, 1999). This highlights the potential importance of feedback 

interaction between pattern formation processes on the one hand, and cooperation 

on the other. Yet, so far, the evolution of cooperation and the pattern forming 

characteristics of organisms, such as their aggregative behavior, have been studied 

in isolation. The joint evolution of pattern forming properties and cooperative 

behavior is, for this reason, an interesting subject for further investigation.  
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Patterning in mussel beds explained by the 

interplay of multilevel selection and spatial self-
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Abstract 

Cooperation, ubiquitous in nature, is yet difficult to explain from an evolutionary 

perspective. Many modelling studies strive to resolve this challenge, but their 

simplifying assumptions on the population and interaction structure are rarely met 

in ecological settings. Here we use a modelling approach that includes more 

ecological detail to investigate the evolution of cooperation in spatially self-

organized mussel beds, where mussels aggregate and attach byssus threads to 

neighbouring conspecifics in order to decrease losses to predation and wave stress. 

We develop a mechanistic, individual-based model of spatial self-organization 

where individual strategies of movement and attachment generate spatial patterns, 

which in turn determine the fitness consequences of these strategies. By combining 

an individual-based simulation approach for studying spatial self-organization 

within generations with an analytical adaptive dynamics approach that studies 

selection pressures across generations, we are able to predict how the evolutionary 

outcome is affected by environmental conditions. When selection pressures on 

cooperation and movement are only governed by local interactions, that is, the 

attachment of individuals to their neighbours, evolution does typically not result in 

the labyrinth-like spatial patterns that are characteristic for mussel beds. However, 

when we include a second level of selection by considering the additional 

protection provided by the formation of mussel clumps, evolutionarily stable 

movement and attachment strategies lead to labyrinth-like patterns under a wide 

range of conditions.  
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Introduction 

Fighting the elements is a challenging task that is frequently best achieved by 

cooperation. Under harsh environmental conditions, many organisms join forces to 

reduce predation risk, locate resources, or build shelters. Although cooperative 

behaviour is widespread throughout nature, cooperation can potentially be 

exploited by free-riders that benefit but do not contribute (e.g. West et al., 2007; Van 

Dyken & Wade, 2012). This ‘paradox of cooperation’ has fascinated theoreticians 

and empirical biologists alike, making the evolutionary emergence and stability of 

cooperation one of the most intensely studied questions in biology (Lehman & 

Keller, 2006; West et al., 2007 & 2008). Theoretical and empirical studies 

demonstrate that the evolution of cooperation has many interesting facets, and that 

a multitude of factors (such as spatial structure, relatedness, reciprocity, and 

punishment) are of potential relevance for resolving the paradox of cooperation 

(Dugatkin, 1997; Nowak & Sigmund, 2005; Foster & Wenseleers, 2006; Lion & Van 

Baalen, 2008; Clutton-Brock, 2009; Archetti et al., 2011; Bourke, 2011; Raihani et al., 

2012).  

 

In view of the intricacy of the problem, it is not surprising that most 

theoretical studies are centred around ‘toy models,’ that is on models that are based 

on an abstract, cartoon-like representation of real-world interactions. Although 

such studies have been extremely useful in furthering our conceptual 

understanding of cooperation, the empirical relevance of their findings is not self-

evident. Cooperation in natural systems is typically taking place in much more 

ambiguous settings than depicted by toy models, and standard concepts of 

cooperation theory (such as ‘cooperation’, ‘defection’, and ‘group’) do not always 

have a clear-cut meaning in natural populations. Our understanding of the 

mechanisms that favour cooperative behaviour may benefit from studies that 

explicitly include the intricacies of particular real-world systems. 

 

Here, we develop and analyse models for investigating cooperation 

between mussels in self-organized mussel beds. Mussels live in a harsh 

environment where they compete for food while risking dislodgement by wave 

stress and predation by birds and other animals (Bertness & Grosholz, 1985; Hunt & 

Scheibling, 2001, 2002; Van de Koppel et al. 2005). In order to survive, mussels 
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move into aggregations and affix themselves to neighbouring conspecifics using 

byssus threads (a glue-like substance; Maas Geesteranus, 1942). By doing so, 

neighbours become secured as well, making this interaction a cooperative act that 

is beneficial to both parties, while generating costs only for the contributing 

mussel.  

 

For at least three reasons, existing theoretical models are not directly 

applicable to cooperative behaviour in mussel beds. In the first place, cooperation 

among mussels depends on two traits: the movement and attachment strategies of 

the mussels involved. Movement affects attachment: since byssus threads have a 

limited length, attachment requires the presence of conspecifics in the vicinity, and 

the clustering of individuals is to a large extent caused by their movement strategy 

(De Jager et al., 2011; Liu et al., 2013). Conversely, attachment directly affects 

movement, because mussels attached to many neighbours are strongly restricted in 

their movement. Accordingly, models of the evolution of mussel cooperation 

should consider the joint evolution of movement and attachment strategies.  

 

A second reason is that the spatial structure in which mussels interact with 

their neighbours is not a given a priori pattern but an emergent property of the 

interplay of movement and attachment (Van de Koppel et al., 2008). The 

characteristic labyrinth-like pattern frequently observed in mussel beds can only 

persist due to between-mussel attachments; without such byssal attachments (and, 

hence, cooperation), there would be no spatial structure. As a consequence, there is 

a reciprocal causality (Laland et al., 2011) between movement and attachment 

strategies (which are shaped by selective forces and strongly depend on the spatial 

configuration) and spatial structure (which is an emergent property reflecting the 

underlying movement and attachment patterns).  

 

A final reason is that mussel attachment leads to the formation of clumps, 

and the survival of a mussel in times of intense water movement is positively 

related to the size of its clump. This adds a new level of selection, where fitness is 

also determined by the size of the clump. However, hierarchical selection in mussel 

beds is more complicated than described in standard models of group structured 

populations (Van Boven & Weissing, 1999; Traulson & Nowak, 2006; Thompson 
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2000; Kohn, 2008; Burton et al., 2012; Molleman et al., 2013). The ‘groups’ (mussel 

clumps) are not defined by external features, but instead are emergent properties 

of mussel movement and attachment and accordingly are highly dynamic and 

variable in size.  

 

To understand the evolution of cooperation in mussel beds, we therefore 

need to develop a model that considers the joint evolution of several traits, the 

emergence of spatial structure, and multilevel selection in a population with 

dynamic group structure. To this end, we extend the standard methods of 

evolutionary analysis to cope with the complexities that are inherent to systems 

with self-organized interaction structures. In a first step, we study the evolution of 

attachment and movement separately; for each (fixed) attachment strategy, we 

determine the evolutionarily stable pattern of movement, and for each given 

movement strategy, we determine the evolutionarily stable investment into byssus 

threads and, hence, attachment. In a second step, we consider the joint evolution of 

attachment and movement. From the separate analyses, we can in many situations 

identify the joint evolutionarily stable strategies for both traits. This information is, 

however, often not sufficient for making evolutionary predictions. To get a more 

detailed picture, we need to derive the two-dimensional selection gradient 

determining the joint evolution of movement and attachment. We show how these 

gradients can be obtained from individual-based simulations. Based on the 

selection gradient, we can then study how the evolutionary dynamics of attachment 

and movement are affected by environmental factors such as food availability and 

predation risk. Finally, we incorporate the effect of clump formation on survival 

and fitness by introducing a second level of selection in the analysis. We compare 

simulations runs of a model including only individual-level selection with results 

of a multilevel selection model to examine the effect and importance of the 

different levels of selection.  

 

Methods 

1. A model for the joint evolution of movement and attachment in self-

organized mussel beds 
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Our model implicitly includes two time scales: a short time scale (within 

generations) at which behavioural and ecological processes take place; and a 

longer time scale (across generations) at which the heritable characteristics of a 

population change due to evolution by natural selection. Within a generation, 

individuals move and attach to each other, leading to pattern formation, which in 

turn affects dislodgement risk by predation and wave stress and food intake (which 

depends on competition). These short-term processes are explicitly represented in 

individual-based simulations. The long-term simulations subsequently allow us to 

estimate the fitness consequences for a spectrum of heritable strategies. These 

fitness estimates will subsequently be used to predict the outcome of adaptive 

evolution. 

 

Movement and attachment 

In natural mussel beds, young mussels move around until they have aggregated 

into a labyrinth-like pattern. Such a pattern may be viewed as an optimal 

compromise between minimizing predation pressure and wave stress (requiring 

dense local aggregation) on the one hand and avoidance to minimize competition 

(requiring low competitor density at a larger scale) on the other (Van de Koppel et 

al., 2005; Van de Koppel et al., 2008). As shown in Van de Koppel et al. (2008), a 

self-organized labyrinth-like pattern can emerge from the movements of individual 

mussels that follow the rule to leave their spot if (a) the mussel density in their 

local ‘attachment range’ (the range where mussels can affix themselves to 

conspecifics and thereby find protection from predation and wave stress) is too low, 

or if (b) the mussel density in the larger ‘competition range’ (the range where 

mussels experience competition for food from others) is too high. This rule is 

illustrated in Figure 6.1A.  

 

Here, we adopt this model of aggregative movement. Three parameters of 

this model are kept fixed at values that were estimated from experimental data 

(Van de Koppel et al., 2008, De Jager et al. 2011): the size of the attachment range, 

the size of the competition range, and the competition threshold density 

(determining whether a mussel will stay or leave in order to avoid competition). In 

contrast, the attachment threshold density τ (determining whether a mussel will 

stay or  leave  in  order  to  find  a  denser  cluster  of  conspecifics)  is  an  evolving  
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Figure 6.1: Illustration of the parameters determining the movement strategy of a mussel (A) and the 

joint effect of the evolvable parameters  (attachment) and  (movement threshold) on spatial pattern 

formation (B).  (A) In the model, the movement decisions of mussels depend on the density of 

conspecifics at two scales: the density of mussels in the attachment range (where mussels can attach to 

each other by byssus threads) and the density of competitors in the competition range. A mussel is 

inclined to move away if the density in the competition range is larger than 0.7 mussels cm-2 and/or if 

the density in the attachment range is smaller than the threshold . The threshold  and the byssus 

attachment rate  are the evolvable parameters in our model. (B) Illustration of the patterns generated 

by mussel populations with different combinations of the movement threshold  and the attachment 

rate . Different spatial patterns emerge, ranging from random distributions (τ < 0.3), to labyrinths (0.3 < 

τ < 0.7) and dense clumps (τ > 0.7), for different combinations of α and τ. The picture was created by 

joining the final mussel distributions of 5x5 simulations. 



134 
 

parameter in our model. As illustrated in Figure 6.1B, the value of τ strongly 

affects the spatial distribution of mussels in the mussel bed.  

 

More specifically, our individual-based model considers 1600 individuals 

with a cross section of 1 cm that are initially spread evenly on a 25 x 25 cm surface. 

Within a generation, there are 500 decision moments, where each individual has to 

make a movement or an attachment decision. At a decision moment, the ‘local 

density’ (i.e., the density of mussels within the attachment range of 1.1 cm ø) and 

the ‘long-range density’ (i.e., the density of mussels within the competition range of 

3.3 cm ø) is calculated for each individual. These densities are compared with the 

competition threshold density (0.7 individuals/cm2) and the attachment threshold 

density (the heritable parameter τ). If the local density is lower than the 

attachment threshold density, or if the long-range density is higher than the 

competition threshold density, the individual moves away in search for a better 

spot. Those individuals that move away make a step in a random direction, where 

the step length is drawn from a power law distribution, as the movement of solitary 

mussels can be approximated by a Lévy walk (De Jager et al., 2011). Whenever a 

moving individual encounters a conspecific, the move ends prematurely (De Jager 

et al., 2014).  

 

Mussel beds are regularly threatened by wave stress, currents, and 

predation. Because dislodged mussels are less efficient filter feeders and are more 

prone to predation (Hunt & Scheibling, 2001), we assume that they have a lower 

survival chance than properly affixed individuals. In order to reduce the risk of 

dislodgement, mussels produce byssus threads to attach themselves to conspecifics. 

In the model, individuals can attach byssus threads to neighbours in their 

attachment range (1.1 cm ø). If an individual does not move during a simulation 

step and if suitable neighbours are present, it attaches itself to a random neighbour 

with probability α (0 ≤ α ≤ 1). This parameter is a heritable strategy that can be 

interpreted as the cooperation tendency of a mussel. 

 

A trade-off exists between movement and attachment: while moving, an 

individual cannot attach, and attached individuals cannot move away because of 

their binds. As real mussels are able to remove some of the byssus threads attached 
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to them, the individuals in our model can destroy the attachment in a decision 

moment and move away in a subsequent one if they are attached with a single 

byssus thread only. To put some boundaries to our model, each individual can 

attach a maximum of 50 byssus threads to its neighbours within the 500 time steps 

of each simulation run. No additional byssus threads are produced once this 

maximum is reached.  

 

Evolutionarily stable movement and attachment strategies 

All these actions have their costs and benefits in terms of Darwinian fitness. 

Moving into a patterned distribution takes energy, but also helps an individual in 

finding conspecifics to attach to. Consequently, attaching to a neighbour requires 

the production of a byssus thread, but can improve a mussel’s survival. We assume 

that fitness corresponds to expected lifetime reproductive success of a semelparous 

organism, that is to the product of the probability to survive until reproduction (S) 

and expected fecundity (F) once reproductive age has been reached. We assume 

that fecundity is determined by food availability (which depends on the food influx 

and the density of conspecifics in the competition range), the total costs of 

movement, and the total costs of attachment (see Appendix A for details). We 

further assume that the survival probability of an individual is positively related to 

the number n of neighbours this individual is connected with via byssus threads. To 

be more specific, we assume that S(n) is a logistic function of n, which is 

characterized by a single parameter n50 that corresponds to the number of attached 

neighbours required for a 50% survival probability (see Appendix A for details). 

This parameter can be viewed as a measure of predation risk: the higher the risk, 

the more attachments are necessary to achieve 50% survival.  

 

The above considerations allow us to calculate in each within-generation 

simulation a fitness value for each genotype, where genotypes are characterized by 

the combination of a movement strategy τ and a cooperation strategy . 

Subsequently, these fitness values can be used for making evolutionary predictions. 
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Figure 6.2: Relative fitness of ‘plus mutants’ (green) and ‘minus mutants’ (red) for a range of resident 

strategies. A mutant will invade the resident population if its relative fitness is larger than one. (A) In 

this scenario, ‘plus’ mutants (i.e. mutants with a higher trait value than the resident) can invade if the 

resident strategy is below 0.5, while ‘minus’ mutants can invade if the resident strategy is above 0.5. 

Accordingly, gene substitution events will shift the resident strategy to 0.5, which is an evolutionary 

attractor and an evolutionarily stable strategy (ESS). In (B), long-term selection is in the direction of 

smaller trait values if the resident strategy is below 0.5, while it shifts the population to higher trait 

values if the resident strategy is above 0.5. In this case, 0.5 is an evolutionary repellor and an 

evolutionarily unstable strategy (EUS). The population will converge to one of the extreme strategies; 

whether it converges to 0 or to 1 depends on the initial conditions.  

 

Two-dimensional selection gradients  

In a first step, we take a ‘univariate’ approach by separately considering the 

evolution of movement and the evolution of attachment, keeping the other 

strategic parameter at a fixed value. Suppose, for example, that the attachment 

strategy is a fixed value . To determine which value of the movement strategy τ is 

evolutionarily stable (given this value of ), we performed for 21 equidistant values 

of τ (0  τ  1) 100 replicate within-generation simulations as follows. We started 

the simulation with a population of 1600 mussels, 2 of which were mutants. The 

residents were characterized by a movement threshold density τ while the 2 mutant 

individuals were given a threshold density that was either higher or lower than that 

of the resident (plus mutant: τ+
 = τ + δ, minus mutant: τ- = τ - δ; where δ = 0.1). 

During the simulation, these movement threshold densities determined when the 

individuals stopped moving and, accordingly, when a final configuration of the 
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mussel bed was reached. After 500 simulation steps, the moved distance, number of 

byssal attachments, number of attached neighbours, and group size were recorded 

for each mutant and a random resident. From these data we first calculated the 

relative fitness of both types of mutant by averaging over the 100 simulations. 

Subsequently we fitted a linear regression line through these fitness estimates. This 

line corresponds to the local selection gradient. Plotting these values results in a 

graph as in Figure 6.2. Whenever we present fitness estimates in a figure, the 

linear-regression predictors are used, since they are less affected by stochasticity 

than the primary fitness estimates. When the fitness curves of plus and minus 

mutants intersect at a value τ* of the movement strategy, this value can either be 

an evolutionary attractor (Fig. 6.2A) or an evolutionary repellor (Fig. 6.2B, Geritz et 

al., 1998). τ* is an attractor if any resident strategies different from τ* can be 

invaded by mutants “in the direction of τ*”, that is, by plus mutants if the resident is 

smaller than τ* and by minus mutants if the resident strategy is larger than τ*. 

This happens in the scenario depicted in Figure 6.2A, since plus mutants have a 

higher fitness than the resident when the resident is to the left of τ*= 0.5, while 

minus mutants have a higher fitness than the resident when the resident is to the 

right of τ*. The opposite pattern is depicted in Figure 6.2B. Here, each resident 

strategy differing from τ* is invaded by mutants that drive the system even further 

away from τ*. Accordingly, τ* is in this case an evolutionary repellor. 

 

For a given set of parameter values, the evolutionary attractors and 

repellors τ* can be determined as a function of the given attachment strategy . 

This is illustrated by the blue curve in Figure 6.3A. In the example shown, the blue 

curve is solid, indicating that in all cases the value τ*() is an evolutionary 

attractor. In later examples, evolutionary repellors can also occur: they would be 

symbolized by a dashed curve. Similarly, for any given value τ of the movement 

strategy, the evolutionary attractors and repellors * of the attachment strategy 

can be identified. The corresponding curve *(τ) is represented by a red curve in 

Figure 6.3A. The intersection point of the blue and the red curves is special, since 

this is the only point where τ* and * are both evolutionary attractors: for any 

other combination of strategies, upcoming mutants could either destabilize the 

movement strategy or the attachment strategy. 
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The situation is not always as clear-cut as in Figure 6.3A. The blue and red curves 

indicating the lines representing the univariate evolutionary attractors and 

repellors may intersect at various points, or they may not intersect at all. To get a 

better picture of the selective forces acting on the two strategies, we need to 

determine the vector field of selection gradients. To this end, we simulated mussel 

bed formation with a population consisting of 1592 residents and 8 mutants. The 

residents were characterized by a resident movement threshold density τ and 

resident attachment strategy α, whereas the mutants differed in their  strategy  

from the residents with respect to the movement strategy (τ+ or τ-), the attachment 

strategy (α+ or α-), or both, resulting in 8 possible mutant strategies (i.e., τ-α-, τ-α, τ-α+, 

τα-, τα+, τ+α-, τ+α, τ+α+). As before, we first determined the relative fitness of the eight 

mutant strategies and subsequently obtained the selection gradient by a (multiple) 

linear regression of these fitness values on mutant strategy (see Appendix B). This 

method is illustrated in Figure 6.3B. 

 

1. Group-level selection in patterned mussel beds 

Up to now, we have only considered the possibility that the survival of a mussel is 

affected by the degree to which it is attached to its immediate neighbours. Close 

attachment to immediate neighbours can protect against predation, if predators 

have a preference for loosely attached food that can be picked up and eaten at a 

faster rate. Attachment to neighbours can, however, have an additional effect. The 

totality of individuals that are connected by byssus threads forms a network, which 

– depending on the spatial configuration of the mussels – can be quite large. All 

the mussels sticking together form a clump, and it is plausible that larger clumps 

can be less easily dislodged and washed away by the action of waves than smaller 

clumps. In other words, we consider it likely that there is a second level of 

selection, namely the size of the group to which a given mussel is attached. 

 

To investigate this hypothesis, we performed a simple field experiment on 

an intertidal flat near the island of Schiermonnikoog, Netherlands (53˚47’ N 6˚21’ 

E). We collected mussels from an existing mussel bed and relocated them to create 

80 groups of 1, 3, 10, and 30 mussels, respectively. Groups were placed parallel to 

the shoreline with a minimum distance of 10 cm between groups. Two days after 

the start of the experiment, we recorded the  presence  and  absence  of  groups.  As  
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Figure 6.3: Illustration of the method for predicting the outcome of the joint evolution of mussel 

movement and attachment strategies. (A) The red curve indicates the evolutionarily and convergence 

stable attachment level α*(τ) for a given movement threshold τ. The blue curve indicates the 

evolutionarily and convergence stable movement threshold τ*(α) for a given attachment strategy α. The 

intersection point of the two curves (black dot) indicates the joint evolutionarily stable strategy 

combination (JESS). The arrowheads point into the direction of the long-term selection gradient. (B) 

Determination of the long-term selection gradient by means of individual-based simulations. The size of 

the grey dots represent the relative fitness of the 8 mutants and the resident (relative fitness of the 

resident equals one). Considering the distance in trait space between resident and mutants and the 

relative fitness of the mutants, we calculated the direction in which selective forces are strongest and 

indicated this direction with an arrow (see Appendix C). Here we used the following parameter values: 

n50 = 2, κ1 = 1, κ2 = 0.005, κ3 = 0.005 (without group-level selection). 

 

shown in Figure 6.4, there was a clear positive relationship between the size of a 

group and the probability of finding the group back after 48 hours (Chi Square test 

of independence: χ2 = 14.4, df = 3, p = 0.002). Due to wave stress and strong 

currents, small groups of mussels are apparently more easily dislodged from the 

sediment and removed from their original location than larger clumps. 
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Figure 6.4: Effect of clump size on the dislodgement of mussel clumps in a field experiment. Small 

clumps were dislodged significantly more often than large clumps Chi Square test: χ2 = 14.4, df = 3, p = 

0.002). 

 

Incorporating group-level selection in the model 

Dislodgement of mussel clusters is likely to decrease the survival chance of all 

mussels within the detached clump. We incorporated this effect by assuming that 

overall survival has two components: individual-level survival SIL(n) that depends on 

the number n of attached neighbours as described above; and group-level survival 

SGL(g) that is positively related to the size g of the group (clump) to which an 

individual is attached. A group is specified as the number of mussels that is directly 

and indirectly linked to the focal individual (including itself). We assume that SGL(g) 

is a logistic function of g. In our baseline scenario, survival is just given by 

individual-level processes: S = SIL(n). In the multi-level scenario of the model, we 

assume that survival is given by the geometric mean of individual-level survival 

SIL(n) and group-level survival SGL(g). 
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Figure 6.5: Effect of food availability and predation risk on the joint evolution of mussel movement and 

attachment strategies. The top row shows the results of our analysis for an intermediate level of food 

availability (κ1 = 0.5). In the bottom-row panels, food is sparse (κ1 = 0.1). From left to right, predation 

risk increases, from no predation (n50 = 0) to low predation (n50 = 2) to intermediate predation (n50 = 

5). The red and blue lines illustrate the ESS of respectively the attachment and movement strategies 

given a constant, non-evolving level of the other trait. The intersection between the two lines correspond 

to the joint ESS (JESS), which is marked by a black dot. The arrows indicate the direction of evolution. 

Self-organized pattern formation depends on the evolved attachment and movement strategies. Because 

the evolutionary outcome is strongly affected by the environmental conditions, different spatial patterns 

emerge within the different situations. Only in (B), we find a single attractor leading to the emergence 

of labyrinth-like patterns. Depending on the initial values of α and τ, random distributions can be 

generated in the case of (C) and (D), labyrinth-like patterns can emerge when the fitness landscape 

resembles that of (B) or (E), and dense clumps can be produced in the case of (A), (C), and (E). 

Parameter values used for these figures are: κ2 = 0.005 and κ3 = 0.005; these figures were created with 

simulations that exclude higher-order levels of selection. 

 

Results 

1. Evolution in the absence of group-level selection 

Analysis of the model that uses single-level selection revealed that a variety of 

qualitatively different evolutionary outcomes are possible at different levels of food 
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availability and predation risk, as represented in Figure 6.5. We ran a multitude of 

simulations of the joint evolution of movement and attachment in a model that 

only considers individual-level selection (SILS, see appendix A), for a range of 

different combinations of the four key parameters: predation risk (n50), food 

availability (κ1), costs of movement (κ2) and costs of byssus thread production and 

attachment (κ3). For conciseness, we here focus on the environmental parameters, 

n50 and κ1.  We found that with single-level selection, the evolution of attachment is 

mostly independent of the movement strategy. The red lines in Figure 6.5 

correspond to those levels of attachment, which, for a given movement threshold, 

are predicted to be the outcome of long-term evolution. In all six panels, these lines 

are almost horizontal, indicating that, in a given environment, the outcome of 

evolution on attachment is only marginally affected by the movement strategy. 

The effect of food availability on the evolved level of cooperative attachment is 

straightforward; when food is scarce, low investment in attachment evolves, 

whereas intermediate cooperativeness results from simulations with higher food 

densities. Changes in predation risk do not seem to alter the evolution of 

attachment as much as food availability. Out of all possible combinations of 

predation risk and food availability, highest attachment levels evolve when 

predation risk is low and food availability is high.  

 

The effect of joint evolution under different conditions is less 

straightforward for the resulting movement strategy (Figure 6.5, blue lines). Now, 

we not only found evolutionary attractors (solid blue lines) but also evolutionary 

repellors (dashed blue lines in Fig. 6.5C). Moreover, the evolved movement strategy 

can strongly depend on the attachment strategy of the population. Depending on 

the environment (the combination of food availability and predation risk), quite 

different evolutionary outcomes were observed. In Fig. 6.5B, for example, the same 

intermediate movement strategy will evolve, irrespective of the attachment 

strategy. In Fig. 6.5A, an intermediate movement strategy will only evolve in case 

of a high attachment tendency; in case of low investment in attachment, the 

movement threshold evolves to the highest possible value. In Fig. 6.5C, the 

movement threshold will either evolve to lowest possible value or to the highest 

possible value, depending on the initial conditions.  
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Overall, joint evolution results in a variety of qualitatively different 

combinations of movement and cooperation strategies. We investigate the effect of 

food availability and predation risk on the joint evolution of the movement 

threshold density τ and the attachment level α. When both traits can evolve, the 

evolution of one trait can lead to further evolution of the other. Imagine that, for a 

given attachment level, the movement strategy evolves to a certain value. Given 

the evolved movement strategy, attachment is likely to evolve to its own 

evolutionary attractor. At this new attachment level, the movement strategy might 

not be at its adaptive value and hence evolves to another level. This process 

continues until both movement and attachment are at the joint evolutionarily 

stable strategy (Joint-ESS). Using a univariate analysis, we can locate this point as 

the intersection of the two lines in Fig. 6.5 that indicate the two unilateral types of 

attractor. A more refined picture emerges by looking at the selection gradients. In 

Figure 6.5, the gradient vector fields are indicated by arrows pointing in the 

expected direction of evolution from every strategy combination. The joint ESS are 

illustrated by a black circle. In each of the six scenarios, the joint ESS is located at a 

different position in 2D-trait space.  

 

The evolutionary outcomes in Figure 6.5 correspond to the formation of 

different spatial patterns in the mussel bed. As we discussed earlier, the pattern that 

is generated in a self-organized mussel bed strongly depends on the movement 

threshold density and the level of attachment (Figure 6.1B). For low values of the 

movement threshold density, the population is homogeneously distributed, even 

more so at high levels of attachment (as attachment prevents movement). At 

intermediate levels of aggregative movement, labyrinth-like patterns are produced, 

and high movement threshold densities give rise to dense mussel clumps. Hence, 

homogeneous mussel beds are generated in Figure 6.5C and D, labyrinth-like 

patterns in Figure 6.5B and E, and dense clumps in Figure 6.5A and C.  

 

2. Introducing multilevel selection 

We found that including multi-level selection, triggered by higher survival in large 

clusters, reduced the range of possible outcomes, and favoured the emergence of 

ESS strategies that generate labyrinth-like patterns. The combination of movement 

and attachment strategy  strongly  affects  the size  distribution  of  the  clumps  of  
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Figure 6.6: The addition of group-level selection can have a large effect on the joint evolution of 

movement and attachment and, as a result, on spatial pattern formation. For example, without group-

level selection, either a randomly distributed mussel bed or dense mussel clumps are generated for the 

situation in Figure 6.5C, depending on initial conditions (A). Adding group-level selection to the 

situation depicted in Figure 6.5C results in evolution towards intermediate levels of the movement 

threshold density and attachment strategy, which give rise to labyrinth-like patterns (B). 

 

mussels that result from between-mussel attachment. It is likely (Fig. 6.4) that 

being part of a larger clump reduces the risk of becoming dislodged by wave action 

and strong currents. We therefore repeated our simulation, but now also included 

the effects of clump-size related survival (a group-level process) in our fitness 

measure. As an illustration, we compare the outcome of simulations with and 

without group-level selection in the scenario of Figure 6.5c in Figure 6.6. While the 

evolutionarily stable attachment level (red lines) are not affected very much, the 

direction of selection on the movement strategy (blue lines) gets reversed by the 

addition of group-level selection. As a consequence, the two evolutionary attractors 

in Figure 6.6A (corresponding to either a random distribution in case of τ*= 0 or to 

a highly clumped distribution in case of  τ*=1)  are replaced by  a  single  joint  

evolutionarily stable strategy with an intermediate value of τ*, corresponding to a 

labyrinth-like distribution of mussels. Figure 6.7 provides a more comprehensive 

analysis of the effect of multi-level selection on spatial pattern formation. For a 

broad range of environmental conditions (food availability and predation risk),  the  
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Figure 6.7: Evolved spatial patterns in case of individual-level selection (A) and multi-level selection (B) 

in relation to predation risk and food availability. The blue areas indicate environmental conditions 

leading to a combination of movement and attachment strategies that result in labyrinth-like patterns 

(see Figure 6.1B), which are characteristic for mussel beds. The purple areas correspond to conditions 

that can alternatively result in labyrinth-like patterns or dense clumps, depending on the initial 

conditions. The orange areas indicate conditions leading either to dense clumps or to a random 

distribution of mussels, again depending on initial conditions. Conditions indicated by red give rise to 

densely clumped populations, while those indicated by yellow lead to random distributions.  

  

evolutionary outcomes are classified according to the resulting spatial distribution 

of mussels in the absence (Fig. 6.7A) and in the presence (Fig. 6.7B) of group-level 

selection. A comparison of both outcomes clearly reveals that the inclusion of 

group-level selection is favourable for the emergence of labyrinth-like patterns, 

which occur under a much broader range of conditions than in the absence of 

group-level selection. The same conclusion was drawn for other environmental 

scenarios (results not shown). As labyrinth-like patterns are a predominant feature 

of mussel beds, we conclude that group-level selection is potentially an important 

driver of spatial self-organization in mussel beds. 

 

Discussion 

We developed an eco-evolutionary model for the joint evolution of movement and 

attachment in mussel beds, to understand how cooperation can emerge in a 

spatially structured system. Here, the interplay of ecological (spatial pattern 

formation determining selection gradients) and evolutionary processes (adaptive 

changes in the parameters determining the process of pattern formation) proved 

critical in explaining both the adaptations of the mussels and the spatial structure 
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of the mussel bed. To study this interplay, we used a three-step approach: (i) 

individual-based simulations of within-generation dynamics of pattern formation, 

(ii) distilling the selection gradient vector field from these simulations, and (iii) 

inferring the direction and long-term outcome of evolution by means of adaptive 

dynamics techniques. We demonstrate that the interplay between ecological and 

evolutionary processes, characterized by the simultaneous evolution of multiple 

traits and the generation of large-scale spatial structures, significantly alters 

evolutionary processes. 

 

Our model makes use of many previous studies that provided a rather 

detailed picture of mussel movement and the spatial self-organization of mussel 

beds (e.g., Van de Koppel et al., 2008; De Jager et al., 2011). This allowed us to take 

over parameters of the movement model that are well supported by experimental 

and field data. Other aspects of our model are less well supported. In particular, our 

assumptions on the costs and benefits of movement and attachment are more 

based on plausibility arguments than on empirical evidence. For this reason, our 

model cannot yield specific, quantitative predictions. Yet, we hope that it provides 

interesting qualitative insights into how eco-evolutionary feedbacks shape the 

spatial structure of mussel beds.  

 

It is widely acknowledged that spatial structure plays a crucial role for the 

evolution of cooperation (Nowak & May, 1992; Ohtsuki et al., 2006; Allen et al., 

2013). Most model studies consider spatial structure as externally given and fixed 

(e.g. Nowak & May, 1992; Vainstein & Arenzon, 2001; Zhang et al., 2005; Ohtsuki et 

al., 2006; Hui & McGeoch, 2007; Allen et al., 2013). In contrast, our model takes 

account of the fact that in many organisms spatial population structure is actively 

modified by the activities of the organisms themselves and therefore emerges 

through spatial self-organization (e.g. Bonabeau et al., 1997; Gautrais et al., 2004; 

Jeanson et al., 2005; Moussaid et al., 2009; De Jager et al. 2011). Our study 

highlights that this can be of crucial importance for evolutionary processes, 

changing evolutionary outcomes.  

 

In most evolutionary models, cooperativeness is considered a univariate 

trait. However, cooperation is an intricate process that manifests itself in multiple 
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aspects. In order to get a good impression of cooperation in real-world systems, a 

multivariate approach is often a necessity. Our study highlights that investigating 

the evolution of just a single trait without considering mutually dependent 

companion traits can be misleading. Even though the joint evolution of multiple 

traits is likely the rule rather than the exception, the eco-evolutionary analysis of 

multivariate evolution is still in its infancy (Leimar, 2009; Metz & De Kovel, 2013).  

Yet, studying the interplay of multiple traits that – through the interactions of their 

ecological functions - define the fitness of individual organisms may prove crucial 

for a thorough understanding of eco-evolutionary dynamics. 

 

An important insight from our model is the emergence of multi-level 

selection from the aggregative movement of the mussels. By aggregating into tight 

clumps, mussels improve their own survival, but also that of the others in the 

group, as the persistence of clumps of mussels is determined by group-level 

properties such as clump size. As persistence on a mussel bed strongly affects 

survival, there is a considerable effect of the properties of the clump on individual 

fitness. Strikingly, this clump effect emerges from the evolution of traits that 

determine aggregative movement and attachment, through the processes of 

ecological self-organization (De Jager et al., 2011). Earlier empirical and theoretical 

studies on group-level selection make use of clearly defined groups, which are 

rarely intermixed between generations (e.g. Wade, 1967; Wade, 1977; Craig, 1982; 

Goodnight, 1985). By keeping groups intact, multigenerational population 

differentiation can occur, which augments selection between groups (Wade, 1978; 

Harrison & Hastings, 1996; Goodnight & Stevens, 1997).  The individuals in natural 

mussel beds are derived from a highly mixed common pool of offspring, and 

different groups are therefore not genetically isolated. In contrast to statements in 

the literature (e.g. Harrison & Hastings, 1996), our model demonstrates that 

homogenization of groups does not prevent group selection to be effective.  

 

Our study highlights the importance of ecological self-organization on the 

effect of selection pressures in real-world populations. Interestingly, selection at the 

group level in the context of self-organized mussel beds is an emerging feature of 

individual-level interactions. In contrast with other studies on group-level selection 

(Maynard Smith, 1964; Williams, 1966; Okasha, 2004; West et al., 2007 & 2008; 
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Leigh, 2010; Burton et al., 2012), selective forces at the group level are not always 

opposing selection processes occurring at the individual level. As such, our model 

provides a more realistic view of multilevel selection in nature, where group-level 

selection does not only express itself as a force counteracting individual-level 

selection, but also as one enhancing selection. To understand evolutionary 

processes in the context of real-world ecosystems, it is crucial to realize that the 

interplay of ecological and evolutionary processes can be an important 

determinant of the adaptations of individual species.  
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Appendix A: Model assumptions on fitness 

We consider a population with discrete, non-overlapping generations. The 

reproductive contribution of individuals to the next generation is given by the 

product of survival until reproduction (S) and fecundity (F): 

 

 𝑊 = 𝐹 ∙ 𝑆.       (6.1) 

 

We assume that fecundity is proportional to the energy available upon 

reproduction, and that this energy is given by some baseline level minus the 

energy spent on movement and the energy spent on the production of byssal 

attachments: 

 

 𝐹 =  𝜅1 −  𝜅2 ∙  𝐷 −  𝜅3  ∙  𝐴.     (6.2) 

 

Here, κ1 is the total amount of energy available for movement, byssus production, 

and reproduction, κ2 is the energy it takes to move one unit centimetre, and κ3 is the 

energy used for creating and attaching a single byssus thread. D represents the 

total distance moved per individual during the simulation and A is the number of 

byssus threads produced by this individual.   

 

In our model, survival can act on the individual level and on the level of mussel 

clumps. We assume that individual-level survival (SIL) is positively related by the 

number of neighbours N to which a mussel is directly attached by byssus threads. 

To be specific, individual-level survival is given by a logistic function: 

  

 𝑆𝐼𝐿(𝑁) = (1 +  𝑒𝜆𝑛 ∙(𝑛50−𝑁))−1.     (6.3) 

 

The parameter n50 denotes that density of attached neighbours for which this 

survival probability is equal to 50%. To reduce the number of model parameters, 

we assumed that in all scenarios considered the survival probability in the absence 

of attached neighbours was constant and given by SIL(0) = 0.01. As a consequence, 

we can get rid of the parameter λn and re-write (6.3) as follows: 
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 𝑆𝐼𝐿(𝑁) = (1 +  99 ∗ 𝑒−ln (99)𝑁/𝑛50)−1.     

 (6.4) 

 

Similarly, we assume that group-level survival is positively related to group (= 

clump) size G and given by the logistic function:  

 

 𝑆𝐺𝐿 = (1 +  99 ∗ 𝑒−ln (99)𝐺/𝑔50)−1.     (6.5) 

 

G is the total number of individuals that is directly and indirectly linked to the 

focal individual by byssal attachments to either this individual, its neighbours, the 

neighbours of its neighbours, etcetera; g50 denotes the clump size for which the 

group-level survival probability is equal to 50%.  

 

In the first part of our analysis, we only considered individual-level selection. This 

was done by equating overall survival with individual-level survival:  S = SIL(N). In 

the second part, we assumed that overall survival is given by the geometric mean 

of individual-level and group-level survival: 

  

 𝑆 = 𝑆𝐼𝐿
0.5  ∙  𝑆𝐺𝐿

0.5.       (6.6)  
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Appendix B: Determination of selection gradients by linear 

regression 

Each simulation with the IBM gives us a distance moved (D), byssus threads 

attached (A), number of attached neighbours (N), and group size (G) for one 

individual of every mutant type (see Figure 6,3B) and one resident. Given a set of 

parameter values (κ1, κ2, κ3, n50, and g50), we calculated the fitness of each of these 

individuals (see Appendix A). Because the IBM is highly stochastic, we repeated 

each simulation 100 times, for 21 x 21 different resident strategy combinations of 

attachment and movement. These simulations thereby provided 100 x 21 x 21 x 9 = 

396900 data points, which we used in a multiple linear regression to smoothen the 

IBM results. We estimated the fitness of an individual with movement strategy τ 

and attachment strategy α in a resident population that uses strategies τres, αres using 

linear regression in R (lm, R Core Team; 2014): 

 

 𝑊(𝜏, 𝛼|𝜏𝑟𝑒𝑠 , 𝛼𝑟𝑒𝑠) =  𝛽0000 + 𝛽1000𝜏𝑟𝑒𝑠 + 𝛽0100𝛼𝑟𝑒𝑠 + 𝛽0010𝜏 + 𝛽0001𝛼 +

 𝛽1100𝜏𝑟𝑒𝑠𝛼𝑟𝑒𝑠 + 𝛽1010𝜏𝑟𝑒𝑠𝜏 + 𝛽1001𝜏𝑟𝑒𝑠𝛼 +  𝛽0110𝛼𝑟𝑒𝑠𝜏 + 𝛽0101𝛼𝑟𝑒𝑠𝛼 +

 𝛽0011𝜏𝛼 + 𝛽1110𝜏𝑟𝑒𝑠𝛼𝑟𝑒𝑠𝜏 + 𝛽1101𝜏𝑟𝑒𝑠𝛼𝑟𝑒𝑠𝛼 + 𝛽1011𝜏𝑟𝑒𝑠𝜏𝛼 + 𝛽0111𝛼𝑟𝑒𝑠𝜏𝛼 +

 𝛽1111𝜏𝑟𝑒𝑠𝛼𝑟𝑒𝑠𝜏𝛼,       (6.7) 

 

where β0000 – β1111 are the regression coefficients. The relative fitness of each mutant 

can now be estimated as W(τ,α | τres,αres) / W(τres,αres | τres,αres). Considering the relative 

fitness of the 8 mutants for each resident strategy combination, we determined the 

vector fields of the selection gradients. 
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7 
General discussion: 

Patterning in mussel beds explained by the 

interplay of multilevel selection and spatial self-

organization 

 

 

 

 

 

 

 

 

 

Monique de Jager 
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General Discussion 

Nature often is amazingly complex. A wide variety of complex spatial patterns can 

be found throughout nature, ranging from the organization of molecules 

(Hogeweg & Takeuchi, 2002) to the formation of regular, self-organized patterns at 

the scale of entire ecosystems (i.e. Klausmeier, 1999; Rietkerk et al., 2004a&b; Van 

de Koppel et al., 2005 & 2008; Eppinga et al., 2009). Self-organized patterns in 

ecosystems develop from the actions of and interactions between organisms. The 

behaviour of these individuals is an important driving force behind spatial self-

organization. Yet, this behaviour has evolved to its present form partly as a 

consequence of this self-made environment. Hence, feedback between self-

organization of ecosystems and the evolution of individual behaviour is quite 

apparent. Nevertheless, scientists generally research self-organization and 

evolution separately and thereby disregard this feedback (but see Kéfi et al., 2008; 

Xavier et al., 2009). Neglecting eco-evolutionary feedbacks in self-organized 

ecosystems might have considerable consequences, especially when incorrect 

conclusions are drawn from ecological models.  

 

Throughout the chapters of this thesis, I have demonstrated that close 

feedback between the evolution of individual behaviour and the spatial complexity 

of their community is essential to explain the cooperative behaviour and 

movement strategies of organisms. To examine eco-evolutionary feedbacks in self-

organized systems, I used intertidal mussels as my main experimental system and 

model template. By moving into clumps and attaching to close neighbours, 

mussels build extensive spatial networks that minimize losses due to predation and 

wave dislodgment (Hunt & Scheibling, 2001, 2002; Van de Koppel et al., 2005, 

2008). Mussels were found to apply a specific movement strategy – a Lévy walk – 

that maximizes the speed of pattern formation (Chapter 2). The active aggregation 

of mussels into labyrinth-like patterns promotes the evolution of between-mussel 

cooperation, where mussels affix themselves with byssus threads to neighbouring 

conspecifics to decrease dislodgment risk by wave stress and predation (Chapter 5). 

In turn, the labyrinth-like pattern is the consequence of multilevel selection 

processes acting on the joint evolution of aggregative movement and between-

mussel cooperation (Chapter 6). The results shown in this thesis leave me to 

conclude that feedback between ecological and evolutionary processes are 
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fundamental to self-organization of mussel beds and, most likely, to many other 

complex ecosystems. 

 

 In this chapter, I discuss the most important results presented in my 

dissertation. A detailed account of the work described here can be found in the 

previous chapters. In my thesis, I have focused mainly on the effect of eco-

evolutionary feedback on two behaviours: movement and cooperation. In the 

following sections, I first discuss how mussel movement strategies are affected by 

self-made environmental complexity. Second, I deliberate on the effect of the self-

generated spatial population structure on the evolution of cooperation and, in turn, 

on the influence of evolution on spatial self-organization. In the final section, I 

review the main conclusions that can be drawn from my findings. In general, my 

results suggest that eco-evolutionary feedbacks have important consequences for 

both the behaviour of individuals and the complexity of ecosystems.     

  

Ecological interactions drive animal movement patterns 

How feedback leads to Lévy walks 

Over the past years, ecologists have found a growing body of empirical evidence on 

Lévy walks in animal movement patterns. A Lévy walk is a random search strategy 

which alternates many small steps with occasional long moves and is therefore 

superdiffusive by nature (Viswanathan et al., 2000; Codling et al., 2008). With 

modern technology advancing GPS tracking systems and high-resolution imaging, 

superdiffusive Lévy-like movements have been observed in a wide variety of 

species, such as soil amoebas, bees, seabirds, seals, spider monkeys, predatory fish, 

and even humans (Heinrich, 1979; Viswanathan et al., 1996; Sims et al., 2000; 

Austin et al., 2004; Ramos-Fernandez et al., 2004; Bertrand et al., 2007; Reynolds et 

al., 2007). One of the main concerns about these empirical findings is that the 

notion of Lévy movement being a widespread phenomenon clashes with classical 

optimal foraging theory. In theory, an organism adopts a certain movement 

strategy if it optimizes the individual’s search efficiency. Computer simulations 

have shown that Lévy walks are only optimal under highly specific conditions, 

which are quite rare in nature (Viswanathan et al., 1999; Bartumeus et al., 2005; 

Sims et al., 2008; Bartumeus, 2009; Reynolds & Bartumeus, 2009). Therefore, Lévy-
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like movement should not be as omnipresent as is suggested by the broad range of 

empirical studies. How and why Lévy walks have evolved in these systems is an 

important question that, until now, has remained unanswered (Reynold & Rhodes, 

2009).  

 

 The theoretical models predicting the rare occurrence of Lévy walks in 

nature generally disregard some key aspects of standard animal life. For one, most 

animals are not alone; they often share their habitat and resources with other 

individuals. Studies on the search efficiency of different movement strategies all 

base their conclusions on models of single individuals, without any interference of 

other organisms. Another essential aspect that is frequently overlooked concerns 

movement of the resource. By taking these ecological interactions in account, other 

conclusions might be drawn than those found in previous papers (Viswanathan et 

al., 1999; Bartumeus et al., 2005; Sims et al., 2008; Bartumeus, 2009; Reynolds & 

Bartumeus, 2009). Furthermore, an examination of eco-evolutionary dynamics 

might aid in understanding why many animal species are moving in a Lévy-like 

fashion. In contrast to earlier models of search efficiency, I incorporate natural 

encounters with other moving individuals in my individual-based model and 

thereby examine search efficiency within a more realistic setting.  

 

In Chapter 2 of this thesis, I demonstrate how Lévy walks in mussel 

movements may have evolved through feedback between mussel movement and 

spatial patterning. Using mesocosm experiments, I observed mussels moving in a 

Lévy-like fashion when solitarily searching for conspecifics. Whereas previous 

studies on seach efficiency have disregarded most ecological encounters 

(Viswanathan et al., 1999; Bartumeus et al., 2005; Sims et al., 2008; Bartumeus, 

2009; Reynolds & Bartumeus, 2009), I show that interactions with the biotic 

environment are of key importance to explain the occurrence of Lévy walks in 

mussel beds. Lévy movement can result from feedback between mussel movement 

behaviour and self-organized environmental complexity. Mussels that efficiently 

move into an aggregation save valuable time and energy: speeding up pattern 

formation decreases the time spend being vulnerable to predation and wave 

disturbance, and limited displacement reduces the energy spend on movement. In 

self-organized mussel beds, a Lévy walk is a very efficient random search strategy 
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(see Fig. 2.2). Individuals that use an efficient search strategy, such as a Lévy walk, 

are likely to gain higher fitness over less efficient conspecifics, thereby increasing 

the frequency of efficiently moving individuals in the next generation. 

Simultaneously, pattern formation is accelerated with each increase in Lévy 

walkers within the population, which again enhances fitness advantages of efficient 

individuals. Overall, an eco-evolutionary feedback can explain how individual 

search strategy and large-scale, self-organized pattern formation leads to the 

evolution of Lévy-like movement in intertidal mussel beds.   

 

Although I address a specific study system, the assumption that movement 

strategies can evolve through eco-evolutionary feedback may be broadly 

applicable. By replacing the externally determined environment – which has been 

the default template in studies on search efficiency – with an environment that is to 

a large extent shaped by the organisms themselves, Lévy walks may be found 

within a much broader range of conditions than was previously believed. This 

feedback between animal movement and environmental heterogeneity provides a 

potential explanation for the numerous empirical observations of Lévy walks 

throughout nature (Ramos-Fernandez et al., 2004; Reynolds et al., 2007; Sims et al., 

2008; Humphries et al., 2010). Because animal movement patterns are for a 

substantial part reflected in the spatial distributions of their resources (Adler et al., 

2001; Boyer & Lopez-Corona, 2009), eco-evolutionary interactions between animal 

movement and environmental complexity are not limited to aggregation with 

conspecifics, but also occur in the search for resources shared with conspecifics. My 

study reveals that eco-evolutionary feedback between animal movement and 

habitat complexity is of key importance in understanding both the evolution and 

the ecology of animal movement strategies. 

    

A close encounter with Brownian motion 

Having a sufficiently accurate representation of animal movement in ecological 

models is of crucial importance for the truthfulness of model results. Although 

previous studies have shown the occurrence of superdiffusive movement in many 

animal species (Ramos-Fernandez et al., 2004; Klafter & Sokolov 2005; Reynolds et 

al., 2007; Sims et al., 2008; Humphries et al., 2010), normal diffusion – which is 

based on Brownian movement patterns – remains the default template for animal 
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movement in most ecological models (Skellam 1951; Kareiva & Shigesada 1983; 

Benhamou 2007; Sims et al. 2008; Edwards et al. 2012). The most curious thing 

about the use of diffusion as a description of animal movement is that it (i) is based 

on the generality of the physical process of diffusion rather than on empirical 

observations of animal movement and (ii) that it is used as being density-

independent, which contradicts the original mechanism as put forward by Einstein, 

where interactions between particles generate Brownian motion (Einstein, 1905; 

Langevin, 1908). 

  

Similar to Brown’s observations of pollen grains moving in a Brownian 

fashion (Brown, 1828), we observed mussels moving in Brownian patterns, 

especially when found in high density mussel clumps. Albert Einstein explained 

the Brownian movements of dissolved particles like pollen grains as the 

consequence of collisions with water molecules (Einstein, 1905; Langevin, 1908). In 

Chapter 3 of this thesis, I demonstrate that animal movements are similarly 

affected by their environment, as intended steps are prematurely ended whenever 

an obstacle, such as a resource or predator, is encountered. 

 

Our findings have some major implications for current ecological 

modelling. First, Brownian motion should no longer be used as the default animal 

movement pattern, because it is not necessarily the intrinsic movement strategy for 

many animals (Klafter & Sokolov 2005). Second, animal movement should be 

described as a density-dependent process. Using a simple model, I have shown how 

any intrinsic movement pattern can become Brownian-like in resource-rich 

environments. My own empirical observations as well as those of others of animals 

displaying Lévy-like movement in areas with low resource density and Brownian 

movement patterns in dense environments further confirm that animal movement 

is a density-dependent process (Bartumeus et al., 2003; De Knegt et al., 2007; 

Humphries et al., 2010; Humphries et al., 2012). As Brownian motion is currently 

used as a default template of animal movement, ecological models of resource-

poor habitats might strongly deviate from reality. A better understanding of the 

interaction between ecological encounters and animal movement is needed to 

improve theoretical models and to explain how animal movement patterns may 

influence natural processes.   
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Using ecological interactions to identify real Lévy walks 

Whether the superdiffusive movement patterns observed in nature are actual Lévy 

walks or consist of multiple different movement modes is currently highly debated 

(Benhamou 2007; Petrovskii et al., 2011; Jansen et al., 2012; De Jager et al., 2011). 

Researchers argue that the power law distributions that indicate a Lévy walk may 

actually be composed of a collection of multiple movement strategies (Benhamou 

2007; Petrovskii et al., 2011). For instance, the Lévy-like shape of a step length 

distribution could be an artefact of pooling the movement trajectories of different 

individuals (Petrovskii et al., 2011). Analysis of single movement paths, as I did in 

Chapters 3 and 4, can prevent this confusion. Furthermore, a movement trajectory 

that seems Lévy-like might be generated by a composite movement strategy, where 

an organism shifts from one movement mode to another with changing 

environmental conditions, such as ecological encounters (Jansen et al., 2012; De 

Jager et al., 2012b). Using the traditional approach of fitting movement strategies 

to step length distributions, one cannot distinguish between true Lévy walks and 

composite multi-scale walks. In Chapter 4 of this thesis, I am able to differentiate 

Lévy-like movement patterns from composite Brownian walks by examining the 

overlap between ecological encounters and clusters of small steps. A characteristic 

of Lévy walks is that clusters of small steps arise at random locations, irrespective 

of the underlying resource distribution. In contrast, a composite walk will result in 

small-step clusters only at resource patches. By recording the frequency of small 

step clusters coinciding with food patches, I demonstrated that mud snails are 

using a Lévy-like search strategy instead of a composite Brownian walk. We 

observed clear clusters of local search on bare substrate, and in bare areas in 

between food patches, despite the absence of food that was presumed to trigger 

local search. In all cases where both the movement path and resource availability 

can be recorded, this novel technique can help gaining insight in the composition 

of the used movement strategy. The additional information obtained from 

recording ecological encounters can be of key importance when disentangling 

different movement strategies. Using this novel method, I can validate that Lévy 

walks are intrinsic strategies rather than a mixture of reactions to a complex 

environment. This result changes our understanding of Lévy movement 
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substantially, especially for those who did not believe that these scale-free 

strategies could exist.  

Eco-evolutionary feedback drives spatial self-organization 

How cooperation is affected by spatial population structure 

The evolution of cooperation is one of the most frequently investigated enigmas in 

evolutionary ecology (Doebeli & Hauert, 2005; Lehman & Keller, 2006; West, 

Griffin & Gardner, 2007, 2008). It is common knowledge that spatial population 

structure can affect the evolution of cooperation through the clustering of 

cooperative relatives (Nowak & May, 1992; Vainstein & Arenzon, 2001; Ishibuch & 

Namikawa, 2005; Zhang et al., 2005; Kun et al., 2006; Ohtsuki et al., 2006; Hui & 

McGeoch, 2007; Kéfi et al., 2008; Szamado et al., 2008); however, it is not 

straightforward how spatial structure can affect cooperation when offspring is 

dispersed over a wide range rather than locally. In game theory, where cooperative 

strategies are played out against each other, theorists generally assume local 

interactions and local dispersal of cooperative strategies. Yet, many species that 

indeed interact locally, still disperse over a wide range (Godfrey & Kerr, 2009). 

Hence, current models are insufficient in explaining the influence of active 

aggregation on the evolution of cooperation in populations with wide-ranging 

dispersal.  

   

 In Chapter 5 of this thesis, I demonstrate that local dispersal is not a 

prerequisite to find an effect of spatial population structure on the evolution of 

dispersal. As mussels aggregate into patterned mussel beds, they actively promote 

cooperation between unrelated conspecifics. Taking cooperation in mussel beds as 

an example, I suggest that active movement into spatial patterns can be a 

fundamental solution to the question of how cooperation can evolve in species with 

wide ranging dispersal. Indeed, many natural populations seem to be spatially 

aggregated (Bel’kovich, 1991; Heppner, 1997; Camazine et al., 2001; Parrish et al., 

2002; Bonner, 2009); finding out how spatial heterogeneity can alter an individual’s 

cooperative investment for any of these species would be of great interest to those 

who seek the holy grail of the evolution of cooperation.   
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Spatial self-organization causes and results from the interplay of multilevel 

selection and joint evolution  

Models explaining ecological or evolutionary processes should be sufficiently 

simple to deliver understandable results and limit computational time. Yet, they 

should not be too simple, in which case incorrect conclusions might be drawn. For 

instance, overly simplistic models of search efficiency could not explain the 

widespread prevalence of Lévy walks in nature, as I argue in Chapter 2 

(Viswanathan et al., 1999; Bartumeus et al., 2005; Sims et al., 2008; Bartumeus, 

2009; Reynolds & Bartumeus, 2009). Similarly, models of the evolution of 

cooperation are also generally based on basic assumptions that are rarely met in 

real world systems, and may therefore give incorrect results. For example, the 

occurrence of lattice-structured populations in nature is definitely not as 

omnipresent as the prevalence of theoretical cooperation studies that use lattice-

structured models might suggest (i.e. Nowak & May, 1992; Lindgren & Nordahl, 

1994; Brauchli, Killingback, & Doebeli, 1999). 

 

In models of cooperation, we often neglect the fact that most organisms 

are mobile and can decide on where and when to aggregate or cooperate. 

Moreover, the decision to aggregate is a behavioural strategy which can, or even 

has to evolve simultaneous with cooperative behaviour. In this thesis, I show that 

this joint evolution of movement and cooperation leads to the emergence of 

different large-scale patterns than when only a single trait is involved. Yet, my 

work revealed that multilevel selection provided a superior explanation of the 

patterns that we observe in real mussel beds. The spatial structure that emerges 

within the population can be of great importance for the survival of the organisms, 

and adds another – generally neglected – level of selection. To enhance our 

understanding of cooperation in nature, case-specific, realistic models are needed 

that are more specifically tailored to a particular real-world system. 

 

 In Chapter 6 of my thesis, I demonstrate how the interplay between 

movement and cooperative behaviour generates an additional level of selection 
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emerging from self-organization, which provides a superior explanation for 

labyrinth-like patterns observed in mussel beds. Using a novel technique, I show 

that joint evolution of two traits can result in different evolutionary stable 

strategies than when only a single trait is allowed to evolve. This feedback between 

the evolution of one trait and the evolution of another trait can give rise to 

strategies that considerably deviate from the conclusions drawn with a single-trait 

model. I illustrate this by comparing the resulting aggregative movement 

behaviour of mussels – which for a large part drives self-organized patterning of 

mussel beds – between a model that involves a constant level of cooperation and 

one that includes the evolution of both cooperation and movement. Although I use 

two jointly evolving traits as an example, it is highly probable that more traits 

evolve simultaneously; it would be a great challenge to model joint evolution of 

more than two traits.  

 

 The joint evolution of aggregative movement and cooperative behaviour in 

mussels underlies the emergence of spatially patterned mussel beds. Due to the 

structure of these spatial patterns, self-organization in mussels gives rise to a 

second level of selection: selection at the clump level. With a simple field 

experiment, I demonstrated that small clumps of mussels are more easily 

dislodged than large clusters, which indicates that clump size affects mussel 

survival. By including clump-level selection in my model of joint evolution, 

labyrinth-like patterns emerge more frequently from the joint evolution of 

movement and cooperation than when only considering individual-level selection. 

This result indicates that selection at higher levels than the individual can be of 

great importance for the fate of the entire population; also, it shows that 

overlooking mechanisms of selection can have vast consequences for the accuracy 

of model outcomes.        

 

In the end… 

Spatial patterning is ubiquitous in nature and is known to emerge from self-

organization in many ecosystems (Klausmeier, 1999; Mistr & Bercovici, 2003; 

Rietkerk et al., 2004a; Rietkerk et al., 2004b; Van de Koppel et al., 2005; Van de 

Koppel & Crain, 2006; Van de Koppel et al., 2008; Eppinga et al., 2009). Patterns as 

diverse as gaps, spots, labyrinths and stripes can be generated by simple 
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interactions between organisms and may enhance the system’s resilience. 

Ecological models have been created to increase our understanding of self-

organization in patterned ecosystems and to predict how these systems will react to 

changes in environmental conditions (Rietkerk et al., 2004). Yet, by disregarding 

evolution of self-organizing traits, incorrect conclusions may be drawn from these 

models. By taking evolutionary processes into account, I demonstrate that eco-

evolutionary feedback is of key importance for spatial patterning in self-organized 

ecosystems and their response to environmental changes. Because evolutionary 

adaptation can change interactions between organisms, it may also affect the 

spatial complexity of ecosystems. In turn, spatial patterns are in part responsible for 

the fitness differences between individuals, leading to the next adaptation. Within 

this feedback, complex dynamics can arise, such as the joint evolution of multiple 

traits or the emergence of a higher-order level of selection through self-

organization into large-scale patterns. Understanding eco-evolutionary dynamics is 

of crucial importance if we want to predict how ecosystems respond to man-made 

changes to the environment, such as accelerated global warming or habitat 

fragmentation. The research presented in this thesis will provide us more insight 

into eco-evolutionary feedbacks in self-organized ecosystems and will hopefully be 

an inspiration for future research within this exciting field of science.  
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Summary 

Spatial patterns in natural systems may appear amazingly complex. Yet, they can 

often be explained by a few simple rules. In self-organized ecosystems, complex 

spatial patterns at the ecosystem scale arise as the consequence of actions of and 

interactions between organisms at a local scale. Aggregation into large-scale 

patterns may, however, also affect the survival and fitness of individuals within the 

ecosystem. As a consequence, pattern-producing behaviour in turn may have 

evolved as an adaptation to this self-generated environment in what is called an 

eco-evolutionary feedback process. Strikingly, both empirical and theoretical 

studies on eco-evolutionary feedbacks in self-organized ecosystems are rare. In this 

dissertation, I investigated the interplay between the ecological process of pattern 

formation and the evolution of two patterning-related traits: movement and 

attachment.  

 

I investigated the interplay between the evolution of self-organizing 

behaviour and the emergent large-scale patterns by performing both ecological 

experiments and eco-evolutionary computer simulations. For this purpose, I used 

mussel beds as my main model system. On intertidal sandbanks, young mussels 

move into labyrinth-like patterns after settlement. Mussels need sufficient 

neighbours in close proximity to decrease the risk of being dislodged by wave stress 

or predation. To accomplish this, mussels attach a glue-like substance called byssus 

threads to other individuals, and form dense clumps. However, gaps in between 

dense mussel clumps are needed to reduce competition for suspended algae. 

Because competition occurs over a larger range than attachment, self-organized 

patterns emerge in the mussel bed in the form of regularly spaced, labyrinth-like 

strings. The formation of labyrinth-shaped patterns increases the within-clump 

density of mussels while keeping the long-range mussel density low enough to 

prevent food competition. Two behavioural traits are mainly responsible for self-

organization in mussel beds: movement and attachment. Without movement, 

mussels cannot search for conspecifics to aggregate with; without attachment (in 

the form of byssal threads), self-generated spatial patterns will not last very long, as 

unattached individuals are easily dislodged by waves. Investigating the eco-

evolutionary feedback between mussel bed formation and the evolution of 
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movement and attachment can provide us with interesting insights into eco-

evolutionary feedbacks in self-organized ecosystems in general.    

   

Using movement trajectories recorded during mesocosm experiments, I 

observed that mussels use a particular movement strategy. Movement patterns of 

solitary mussels are similar to a Lévy walk, where many short steps are alternated 

with very long moves. Lévy walks are frequently observed in nature, yet theoretical 

models suggest that habitats in which Lévy walks are optimal are rare, as Lévy 

walks are only optimal when resources are scarce and heterogeneously distributed.  

In Chapter 2, I argue that the occurrence of Lévy-like movements in mussel beds is 

due to the eco-evolutionary feedback between self-organized pattern formation and 

mussel movement. To prove this hypothesis, I simulated mussel bed formation 

with an individual-based model, where I varied the movement strategy used by the 

virtual mussels between model runs. The results of these simulations show that a 

spatially patterned mussel bed is generated most efficiently when mussels make 

use of a Lévy walk. Further evolutionary analyses, where I test for the invasion 

success of mutant movement strategies in a mussel population in which all other 

individuals adopt a resident movement strategy, demonstrate that Lévy walks 

evolve in my simulated self-organized mussel beds. Because Lévy walks accelerate 

pattern formation and the spatial pattern in turn increases the survival of these 

Lévy walkers, my results suggest that, in mussel beds, Lévy walks evolve through 

an eco-evolutionary feedback between mussel movement and self-organized 

patterning. Although my model is specifically designed to simulate mussel 

movement in self-organized mussel beds, the conclusions drawn from this study 

may explain why Lévy walks are found under much broader conditions than is 

currently explained in mathematical models.  

 

Despite the increasing prevalence of observations of Lévy walks in nature, 

empiricists more and more notice that organisms might do a Lévy walk in one 

environment, but a Brownian walk in another. Lévy walks are frequently observed 

in the movement patterns of organisms that are searching for resources in 

resource-poor habitats, whereas their movements appear more Brownian-like, with 

more intermediate-sized steps and fewer large moves, in resource-rich areas. This 

phenomenon is often explained as an active switch in movement strategy to 
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optimize search efficiency in both environments. Opposing this view, I 

hypothesized in Chapter 3 that the intrinsic movement strategy does not change 

but rather that the observed movement pattern is the consequence of interactions 

with the environment. Following Einstein’s perspective on Brownian motion in 

atoms and molecules, I argued that collisions with other objects such as resources 

or conspecifics causes a move to be prematurely ended. In areas with few objects to 

encounter, an organism’s movement pattern would not be unrecognizably altered. 

In dense environments, however, the frequent occurrence of encounters transforms 

any movement strategy into a Brownian-like pattern. By analysing mussel 

movement in five different density treatments, I show that observed movement 

patterns become more Brownian-like with increasing mussel density. In Chapter 4, 

I found similar results for the movements of mud snails. I verified that this shift to 

Brownian motion is caused by collisions with conspecifics by disentangling 

truncated steps and moves into free space, demonstrating that the movement 

strategy does not change when only considering non-truncated steps. With 

individual-based model simulations, I showed that an active shift from Lévy to 

Brownian motion with increasing mussel density is unnecessary, as Lévy walks are 

equally efficient as Brownian movement in creating spatially patterned mussel 

beds at high mussel densities. Furthermore, I analytically confirmed the hypothesis 

that any movement strategy becomes more Brownian-like with increasing 

encounter rates using a simple argument. My results suggest that observed 

Brownian patterns in the movement trajectories of animals in their natural habitat 

can be the consequence of superdiffusive intrinsic movement that is altered by 

target density.   

 

Whether Lévy walks observed in nature are actual Lévy walks or the 

product of a mixture of different strategies (a ‘composite Brownian walk’) is 

currently under debate. Using traditional methods, one cannot distinguish between 

the two movement types. In Chapter 4, a novel technique is demonstrated that 

helps distinguishing between true Lévy walks and composite movement strategies, 

by examining whether clusters of small steps coincide with resource patches 

(which would be indicative of a composite Brownian walk). Using a mud snail 

experiment as an example, it was shown that local search clusters are not only 

produced in food patches but also on bare soil, demonstrating that true Lévy walks 
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may indeed exist in nature. The ability to extract intrinsic movement strategies 

from observed movement patterns (Chapter 3) and to distinguish between different 

movement strategies (Chapter 4) can have great implications for the representation 

of animal movement in ecological modelling: the use of Brownian motion as a 

default template for animal movement is not always justifiable and should be 

replaced by a more realistic, density-dependent type of movement template.    

 

Mussels, as well as many other organisms, actively aggregate into groups, 

where they cooperate with neighbouring conspecifics. Because cooperation can be 

exploited by individuals that do not contribute, the widespread occurrence of 

cooperation in nature remains puzzling. Theoretical studies have shown that the 

spatial structure of a population can promote the evolution of cooperation. 

However, these studies consider local dispersal to be the driving factor behind both 

the spatial patterning and the occurrence of cooperation, thereby disregarding the 

fact that many species disperse over a wide range and yet cooperate locally. In 

Chapter 5, I demonstrated how spatial population structure affects the evolution of 

investment into byssal thread attachments in spatially patterned mussel beds. 

Using a simple model, I showed that active aggregation into dense mussel clumps 

gives rise to the highest levels of cooperativeness over a wide range of 

environmental stress. These results suggest that active clustering can promote the 

evolution of cooperation even when offspring are widely dispersed.  

 

Cooperation and aggregative movement are two fundamental behaviours 

that form the foundation of self-organization in mussel beds. Without movement 

into clusters, mussels are unable to attach their byssus threads to neighbouring 

conspecifics, and without cooperation, movement into clusters would be a useless 

endeavour. Because movement and cooperative behaviour are quite dependent on 

one another, evolution of one of these traits is likely to affect evolution of the other 

and, subsequently, the spatial pattern that will be generated in the mussel bed. In 

Chapter 6 of this thesis, I showed that the joint evolution of cooperation and 

aggregative movement can result in differently patterned mussel beds than when 

only one of the two behaviours is allowed to evolve in isolation. In most 

evolutionary models, evolution of other than the one focal trait is habitually 
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disregarded; my results demonstrate that this may lead to drawing the wrong 

conclusions.  

 

The self-organized pattern that emerges from the individuals’ movement 

and cooperation in turn also affects the persistence of mussel clumps. With a 

simple field experiment, I showed that not only inadequately attached mussels can 

become dislodged by wave stress or predation, but that similarly, small mussel 

clumps are also more vulnerable to dislodgement than large clumps. 

Dislodgement often implies removal from the mussel beds into suboptimal 

habitats with high risk of predation and low food availability. Hence, mussel 

mortality is linked to the persistence of clumps formed by the self-organization 

process, and clump persistence thereby influences the selection of particular traits. 

Hence, a loop develops, where the ecological process of pattern formation adjusts 

selection processes acting upon the mussels, which than in turn alter the ecological 

process of pattern formation. Adding this group-level mechanism of selection to 

our model in Chapter 6 leads to a substantially higher occurrence of the 

emergence of labyrinth-like patterns than simulations with individual-level 

selection only. As these patterns are frequently observed in natural mussel beds, 

these results suggest that multi-level selection is of key importance in the eco-

evolutionary feedback that leads to the formation of spatially patterned mussel 

beds.  

 

My findings demonstrate that eco-evolutionary feedbacks are of great 

importance for the evolution of traits that trigger spatial self-organization in 

ecological systems. At the individual level, self-organizing traits such as movement 

or attachment can evolve through the interplay between evolution of individual 

behaviour and the spatial complexity of the community. As large-scale, self-

organized patterns are generated by the actions of and interactions between 

individuals, pattern formation is similarly affected by this eco-evolutionary 

feedback that often involves traits that modify the environment. In more general 

terms, an organism’s behaviour can affect its environment, which in turn 

influences the fitness of this individual and of others. The eco-evolutionary 

feedback that arises from the interplay between individual behaviour and spatial 

patterning can fundamentally alter the mechanisms that drive evolutionary 
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change by generating a group effect on survival, leading to an additional selection 

process affecting individual fitness. To truly understand ecological and 

evolutionary processes in nature, it is of key importance to study eco-evolutionary 

interactions as they develop in the complex settings of the natural world.  
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Samenvatting 

Ruimtelijke patronen in natuurlijke systemen lijken soms ongelooflijk complex. 

Toch kunnen ze vaak verklaard worden met een paar eenvoudige regels. 

Grootschalige, complexe ruimtelijke patronen in zelfgeorganiseerde ecosystemen 

zijn bijvoorbeeld het gevolg van de lokale interacties tussen organismen. Met 

andere woorden, de complexiteit van het ecosysteem wordt veroorzaakt door de 

eigenschappen en het gedrag van organismen. Aggregeren in grootschalige 

patronen kan echter ook de overleving en fitness van de individuen beïnvloeden. 

Hierdoor kan het patroonproducerende gedrag weer zijn geëvolueerd als een 

aanpassing aan de door de organismen zelf gegenereerde omgeving door middel 

van een zogenaamd eco-evolutionair terugkoppelingsproces. Opvallend is dat zowel 

empirische als theoretische studies over eco-evolutionaire terugkoppelingen in 

zelfgeorganiseerde ecosystemen ontbreken. In dit proefschrift heb ik onderzoek 

gedaan naar de interactie tussen ecologische patroonvorming en de evolutie van 

patroongerelateerde kenmerken zoals beweging en aanhechting.  

 

Ik onderzocht de interactie tussen de evolutie van zelforganiserend gedrag 

en de resulterende grootschalige patronen door middel van zowel experimenten als 

computersimulaties. Hiervoor gebruikte ik mosselbanken als belangrijkste 

modelsysteem. Jonge mossels in mosselbedden op intertidale zandbanken 

aggregeren in labyrintachtige patronen. Mosselen hebben voldoende buren in hun 

nabijheid nodig om het risico op predatie en losslaan door golven te verminderen. 

Om dit te bereiken hechten mosselen zich met hun zogenaamde byssusdraden aan 

andere individuen en vormen daarbij dichte kluwens. Om de competitie voor 

voedsel – algen – te verminderen, moet er echter genoeg open ruimte tussen de 

kluwens aanwezig zijn. Doordat voedselconcurrentie een effect heeft over een 

grotere afstand dan het lokale hechten aan buren, ontstaan zelfgeorganiseerde 

patronen in het mosselbed in de vorm van regelmatige labyrintachtige structuren. 

De vorming van de patronen verhoogt de dichtheid van mosselen binnenin de 

mosselklomp terwijl de dichtheid op grotere schaal laag genoeg blijft om 

voedselconcurrentie te voorkomen. Twee gedragskenmerken zijn de belangrijkste 

factoren in de vorming van de patronen: beweging en aanhechting. Zonder 

beweging kunnen mosselen niet aggregeren en zonder hechting van byssusdraden 

aan nabij liggende buren zal de gegenereerde ruimtelijke structuur niet lang 
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bestaan, aangezien losse individuen gemakkelijk door de golven kunnen worden 

weggespoeld. Het onderzoeken van de terugkoppeling tussen mosselbedvorming 

en de evolutie van beweging en aanhechting kan ons interessante inzichten 

opleveren in de implicaties van eco-evolutionaire interacties in zelf-georganiseerde 

ecosystemen.  

 

Gedurende de experimenten werd duidelijk dat mosselen gebruikmaken 

van een speciale bewegingsstrategie. De bewegingspatronen van solitaire mosselen 

zijn vergelijkbaar met een Lévy walk, waarin veel korte “stapjes” afgewisseld 

worden met lange, nagenoeg rechtlijnige, bewegingen. Lévy bewegingen worden 

frequent waargenomen in de natuur, bijvoorbeeld in mariene roofdieren en 

mieren. Theoretische modellen suggereren echter dat de omstandigheden waarin 

deze Lévy bewegingen optimaal zijn juist zeer zeldzaam zijn. In Hoofdstuk 2 

beargumenteer ik dat het voorkomen van Lévy-achtige bewegingen in 

mosselbedden het gevolg is van eco-evolutionaire terugkoppeling tussen 

patroonvorming en de ontwikkeling van de bewegingsstrategie van de mossel. Om 

deze hypothese te onderbouwen simuleerde ik de vorming van mosselbedden met 

een model dat gebaseerd is op individueel gedrag (een ‘individual-based model’), 

waarin ik de bewegingsstrategie van de virtuele mossels varieerde tussen de 

verschillende simulaties. Uit de resultaten van deze simulaties blijkt dat patronen 

het snelst gevormd worden wanneer de mosselen gebruikmaken van een Lévy 

walk. Een evolutionaire analyse, waarin ik getest heb welke mutant strategieën 

kunnen binnendringen in een bestaande populatie, wijst uit dat de Lévy walk van 

nature evolueert in mosselbedden met patronen. De reden hiervoor is dat de Lévy 

walk de patroonvorming versnelt en het ruimtelijk patroon op zijn beurt de 

overlevingskansen van de Lévy-mossels verhoogt. Dit resultaat suggereert dat, in 

mosselbedden, Lévy bewegingen evolueren als gevolg van een sterke interactie 

tussen ecologische en evolutionaire processen. Hoewel mijn model specifiek van 

toepassing is op mossels in zelfgeorganiseerde mosselbanken, kunnen de 

conclusies uit deze studie wellicht ook toepasbaar zijn voor andere organismen en 

ecosystemen.  

 

Ondanks het toenemende aantal observaties van Lévy bewegingen in de 

natuur vinden empirici ook regelmatig dat organismen een Lévy walk in de ene 
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omgeving doen maar een Brownse beweging in een andere. Lévy 

bewegingspatronen worden vaak waargenomen bij organismen die op zoek zijn 

naar voedsel in arme habitats, terwijl Brownse bewegingspatronen, die bestaan uit 

stappen van steeds ongeveer dezelfde grootte, voornamelijk in voedselrijke 

gebieden voorkomen. Dit fenomeen wordt vaak uitgelegd als een actieve 

verandering in bewegingsstrategie waarmee de zoekefficiëntie in beide 

omgevingen geoptimaliseerd wordt. In Hoofdstuk 3 laat ik zien dat, in 

tegenstelling tot de bovengenoemde visie, de intrinsieke bewegingsstrategie van 

mossels niet verandert bij verschillende omgevingsomstandigheden, maar dat het 

waargenomen bewegingspatroon het gevolg is van interacties met 

omgevingsobjecten zoals andere mosselen. Hierbij moet opgemerkt worden dat 

mossels niet zoeken naar voedsel, maar naar soortgenoten om zich aan vast te 

hechten. Door middel van analyses van de bewegingen van mossels in 

experimenten met verschillende mosseldichtheden, vond ik dat botsingen met 

andere mosselen de beweging van mossels beïnvloeden, waarbij voornamelijk 

lange bewegingen afgebroken worden. Door middel van het analyseren van 

mosselbewegingen in vijf verschillende dichtheden, laat ik zien dat de 

waargenomen bewegingspatronen daardoor meer op de Brownse patronen gaan 

lijken met toenemende mosseldichtheid. Ik heb geverifieerd dat deze verschuiving 

naar Brownse bewegingspatronen wordt veroorzaakt door botsingen met 

soortgenoten met een simpele analyse, waarbij ik de onafgebroken en afgebroken 

stappen uiteenhaal. Hieruit blijkt dat het bewegingspatroon niet verandert wanneer 

alleen de onafgebroken stappen bekeken worden. Met simulaties liet ik zien dat een 

actieve verschuiving van Lévy naar Brownse beweging met toenemende dichtheid 

onnodig is, aangezien de Lévy strategie even efficiënt is als de Brownse 

bewegingsstrategie bij hoge dichtheden. Verder heb ik mijn hypothese, dat elke 

strategie meer Brown-achtig wordt met toenemende botsingen, analytisch 

onderbouwd met behulp van een eenvoudig wiskundig argument. Deze conclusies 

kunnen grote gevolgen hebben voor de manier waarop de beweging van dieren 

geïncorporeerd wordt in ecologische modellen: het gebruik van een simpele 

Brownse beweging als een standaard template voor de beweging van dieren is niet 

altijd gerechtvaardigd en zou vervangen moeten worden door een realistisch, 

dichtheid-afhankelijk bewegingstype. 
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Er is momenteel veel discussie gaande over de vraag of Lévy walks die 

waargenomen zijn in de natuur, daadwerkelijk Lévy walks zijn of dat ze ontstaan 

zijn uit een mix van meerdere bewegingsstrategieën. Traditionele methoden die 

gebruikt worden om Lévy walks te ontdekken kunnen geen onderscheid maken 

tussen echte Lévy walks en de zogenaamde ‘composite Brownian walks’, In 

Hoofdstuk 4 wordt een nieuwe methode gedemonstreerd die helpt om vast te 

stellen om welke van de twee bewegingsstrategieën het gaat. Deze methode houdt 

in dat de positie van clusters van kleine bewegingen vergeleken wordt met de 

aanwezigheid van voedsel op deze plekken (wat indicatief is voor een composite 

Brownian walk). Met een experiment met slakjes die op algen grazen hebben we 

aangetoond dat kleine-bewegings-clusters niet alleen voorkomen in voedselrijke 

gebieden maar ook op de kale grond, wat demonstreert dat Lévy walks 

daadwerkelijk kunnen bestaan in de natuur.  

 

Mosselen, net als vele andere organismen, aggregeren actief in groepen, 

alwaar zij samenwerken met soortgenoten. Omdat deze samenwerking, ook wel 

coöperatie genoemd, misbruikt kan worden door individuen die geen bijdrage 

leveren, blijft het wijdverspreide gebruik van coöperatie in de natuur een puzzel. 

Theoretische studies hebben aangetoond dat de ruimtelijke structuur van een 

populatie de evolutie van coöperatie kan promoten. Maar deze studies beschouwen 

lokale verspreiding als een belangrijke voorwaarde voor de evolutie van coöperatie, 

daarbij uit het oog verliezend dat vele soorten zich verspreiden over grote 

afstanden en toch lokaal coöpereren. In Hoofdstuk 5 toon ik aan hoe ruimtelijke 

structuren invloed hebben op de evolutie van investering in byssusdraden in 

ruimtelijk gestructureerde mosselbedden. Met behulp van een simpel model toon 

ik aan dat patroonvorming in mosselpopulaties het toch mogelijk maakt dat 

coöperatief gedrag evolueert en resulteert in een hoge mate van coöperatie in een 

breed scala van omgevingsstress. Deze resultaten suggereren dat actieve clustering 

de evolutie van samenwerking kan bevorderen, zelfs wanneer nageslacht wijd 

verspreid wordt. 

 

Samenwerking en aggregatieve beweging zijn twee fundamentele 

gedragingen die de basis van zelforganisatie in mosselbanken vormen. Zonder 

actieve bewegingen die leiden tot het vormen van clusters zijn mosselen niet in 
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staat hun byssusdraden te hechten aan naburige soortgenoten, en zonder 

samenwerking zou het aggregeren in clusters een nutteloze inspanning zijn. 

Omdat beweging en coöperatief gedrag zeer afhankelijk zijn van elkaar, zal de 

evolutie van een van deze eigenschappen waarschijnlijk door het beïnvloeden van 

het ruimtelijk patroon ook de evolutie van de andere eigenschap beïnvloeden. In 

Hoofdstuk 6 van dit proefschrift heb ik laten zien dat de gezamenlijke evolutie van 

het aanhechtings- en bewegingsgedrag kan resulteren in een ander patroon op 

mosselbank-niveau dan wanneer slechts een van de eigenschappen op zichzelf 

staand evolueert. In de meeste evolutionaire modellen wordt co-evolutie van 

meerdere eigenschappen binnen hetzelfde organismen gewoonlijk buiten 

beschouwing gelaten; mijn resultaten tonen aan dat dit kan leiden tot het trekken 

van de verkeerde conclusies. 

 

Het zelfgeorganiseerde patroon dat naar voren komt uit de beweging en de 

aanhechting van de individuen heeft een belangrijk effect op de overlevingskansen 

van mossels binnen de mosselklompen. Met een eenvoudig veldexperiment liet ik 

zien dat niet alleen individuele mosselen losgeslagen kunnen worden door golfslag 

of predatie, maar dat de overleving voor een belangrijk deel wordt bepaald door 

het al of niet losslaan van de klomp waarin individuele mossels zich bevinden. Mijn 

experimenten lieten daarbij zien dat kleine mosselklompen meer kwetsbaar zijn 

voor het losraken dan grote klompen. Het losraken impliceert vaak verwijdering 

uit mosselbanken en verhoogt de kans dat de mosselen in een suboptimale 

omgeving met een hoog risico op predatie en lage beschikbaarheid van voedsel 

terecht komen. Hierdoor is mosselsterfte verbonden met de standvastigheid van 

klompen die gevormd zijn door zelforganisatie; deze klompen beïnvloeden 

daardoor selectie van specifieke eigenschappen. Hierbij ontstaat een 

terugkoppeling waarin het ecologische proces van patroonvorming de 

evolutionaire selectieprocessen beïnvloedt, die dan op hun beurt het ecologische 

proces van patroonvorming aanpassen. Het toevoegen van dit selectiemechanisme 

op groepsniveau aan ons model in Hoofdstuk 6 geeft een heel interessant resultaat. 

Zonder dit selectiemechanisme op groepsniveau kunnen slechts voor een heel 

beperkt aantal parameterwaardes de vorming van de labyrintachtige patronen 

verklaard worden. Meestal vormen er zich dan losse klompjes, of blijven de mossels 

willekeurig verspreid. Met selectie op groepsniveau vormen zich voor nagenoeg 
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alle parameterwaardes de geobserveerde labyrintachtige patronen. Deze 

labyrintachtige patronen worden vaak waargenomen in natuurlijke mosselbanken, 

wat suggereert dat multi-level selectie van groot belang is in de eco-evolutionaire 

interactie die leidt tot de vorming van ruimtelijke patronen in mosselbanken. 

 

Mijn bevindingen tonen aan dat eco-evolutionaire terugkoppelingen van 

groot belang zijn voor het ontstaan van ruimtelijke patronen in zelfgeorganiseerde 

ecosystemen. Op individueel niveau kunnen zelforganiserende eigenschappen, 

zoals beweging of aanhechting, evolueren door de wisselwerking tussen de evolutie 

van het individuele gedrag en de ruimtelijke complexiteit van de gemeenschap. 

Deze grootschalige, zelfgeorganiseerde patronen worden op hun beurt gegenereerd 

door de acties van en interacties tussen individuen; er is daarom duidelijk sprake 

van een eco-evolutionaire feedback. Deze interactie vindt hoogstwaarschijnlijk niet 

alleen plaats in ecosystemen met zelforganiserende, regelmatige patronen, zoals 

mosselbedden, maar zal waarschijnlijk plaatsvinden in elk ecosysteem waar 

organismen zelf hun ruimtelijke verdeling beïnvloeden. In meer algemene termen 

kunnen we zeggen dat wanneer het gedrag van een organisme invloed heeft op zijn 

omgeving, deze omgeving op zijn beurt de fitness van zowel dit individu als dat van 

anderen zal beïnvloeden. De eco-evolutionaire terugkoppeling die voortvloeit uit 

het samenspel tussen individueel gedrag en ruimtelijke patroonsvorming kan de 

evolutionaire mechanismen fundamenteel veranderen, bijvoorbeeld door 

verschillen tussen groepen te genereren welke kunnen leiden tot selectie op een 

hoger niveau dan het individu. Om de eigenschappen van organismen in de 

complexe natuur goed te doorgronden is het van cruciaal belang inzicht te krijgen 

in de interactie tussen ecologische en evolutionaire processen, ook in systemen 

waar de relatie tussen organismen en de ruimtelijke structuur van het ecosysteem 

minder rechtlijnig is. 
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