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Abstract 
 
In the emerging field of biologging an increasing number of methods are introduced to study time 
budgets of animal behaviour. Tri-axial accelerometers are promising sensors to study animal 
behaviour since they can measure very detailed the orientation and movements of the animal on 
which it is attached. However, former studies using accelerometers had difficulties in finding a good 
method to classify complex behaviours. Moreover, measuring acceleration is an energy demanding 
process making it hard to construct time budget over a longer period. We study if accelerometers 
can be used to classify behaviour of a characteristic shorebird, the Oystercatcher Haematopus 
ostralegus. Instantaneous speed measured with the same biologgers demands less energy than 
accelerometers and we explore if this can be an alternative for classifying behaviour. We successfully 
equipped three Oystercatchers with solar powered biologgers, which include a tri-axial 
accelerometer and a Global Position System (GPS), the latter also measures instantaneous speed. We 
could link 702 direct visual observations of 18 different behaviours to recorded instantaneous speed 
and tri-axial acceleration. This data was used to built classification trees. According to our 
expectation, instantaneous speed could be used for classifying a flying Oystercatcher, but was less 
useful to disentangle “Terrestrial locomotion” and “No movement” behaviours, with a cross-
validated error of 33%. Predictors derived from measured acceleration could be used to classify 5 
basic (groups of) behaviours: flying, “terrestrial locomotion”, standing, sitting and preening, with an 
overall cross-validated error of 13%. 
To show some possible implementations of the developed classification trees, we make time budgets 
for the logged Oystercatchers for the period June 2009 - March 2010 and compare day-night 
behaviour and behaviour in different habitats. This shows that remarkable little time (less than 1%) is 
spent to flying and Oystercatchers tend to move more during the day than during the night. There is 
a lot of variation between birds in habitat occupation, especially in the breeding season. The logged 
birds behaved differently inside their territory (less active) than outside their territory (more active). 
Eventually, when many birds are equipped with a logger, these individual choices can be linked to 
fitness and survival. In the case of the Oystercatcher, there is a need for such studies, from both a 
fundamental and conservational perspective. We conclude that it is possible to combine the 
information on whereabouts and basic behaviour of Oystercatchers throughout the year, something 
that was never reported for free living birds before. 
 

 

Introduction 
 
Time budgets are a fundamental tool in ecological research. They  can improve our understanding of 
many aspects of animal biology, including population regulation, foraging behaviour and habitat 
utilization. However, one of the major empirical problems in the field of behavioural ecology is to 
actually identify individual time budgets, especially when it comes to studying moving animals in 
their natural habitat (e.g. Nathan, 2008). With animal-attached loggers, so called biologgers, it is 
possible to study the daily life of mobile animals in great detail (Bograd et al, 2008). Global 
positioning systems (GPS) are often used in biologging, employed to study temporal and spatial 
habitat utilization (Ropert-Coudert & Wilson, 2005). Nevertheless this is only a part of the story, since 
a geoposition seldom gives information about behaviour. In the emerging field of biologging, an 
increasing number of techniques have been used to identify animal behaviour (Ropert-Coudert & 
Wilson, 2005), all of these methods have their own advantages and disadvantages. For instance, 
instantaneous speed measured by a GPS has been used to classify behaviour such as flying Ospreys 
Pandion haliaetus (Klaassen et al.., 2008). Yet, instantaneous speed is probably too inaccurate for 
disentangling small differences in locomotion (Witte & Wilson, 2004). Accelerometers are a 
promising sensor for studying animal behaviour since accelerometers can measure both the 
orientation and very fine scaled dynamical movements of the animal to which it is attached (Yoda et 
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al.  1999). Accelerometers were first tested on a large free living animal: the Adélie Penguins 
Pegoscelis adeliae (Yoda et al. 1999). After visually inspecting their data, this study could successfully 
use accelerometers to qualify up to seven basic behaviours (Shepard et al. 2008). A more 
sophisticated technique to analyze acceleration data was presented by Watanbe et al. (2005) who 
used fast Fourier transformation to characterize acceleration signals. In this way, eight basic 
behaviours of the Domestic cat Felis catus could be classified. Recently, studies has been looking for 
a method to classify more complex behaviour using acceleration. Sakamoto et al. (2009) developed a 
method which could categorize up to 20 different patterns in acceleration of European shags 
Phalacrocorax aristotelis. However, their approach is based on unsupervised classification, hence it is 
not sure to which behaviour each group belongs. In fact, many studies on free living animals 
equipped with accelerometers have difficulties interpreting their data since it is based on 
unsupervised classification (Sakamoto et al. 2009). What is more, measuring acceleration demands a 
lot of energy and storage capacity of the biologger, hence up to now, all research with 
accelerometers is restricted to a time period of less than a week.   
 
Aim. This study contributes to the current search for determining how acceleration can be used to 
classify animal behaviour, in our case the behaviour of a characteristic shorebird; the Oystercatcher 
Haematopus ostralegus. We do this by linking direct visual observations of behaviour on free living 
birds to tri-axial acceleration measured with biologgers. This data is used to develop a classification 
model. We explore if instantaneous speed measured with the same biologgers can be an alternative 
for classifying behaviour, since measuring instantaneous speed demands less energy. Moreover, we 
show that the classification model can be used to make time budget over a long time period. In 
current Oystercatcher studies there is both from a fundamental and conservational perspective a 
need for this kind of work (see below).  
 
Oystercatchers. According to the web of science, Oystercatchers are by far the most studied 
shorebird in the world (Ilya McLean pers. comm.), presumably because it is a locally abundant, long 
living, conspicuous animal that lives in open landscapes, feeding on easily identifiable prey. On the 
Dutch island of Schiermonnikoog (53.26°N, 06.10°W, Figure 1), a population of breeding 
Oystercatchers has been studied in detail since 1984 by the University of Groningen, recently in 
cooperation with SOVON Dutch Centre for Field Ornithology. The studies seek to link individual 
behaviour to population dynamics and the findings go beyond the field of bird research (Sutherland, 
1996). Famous is the work of Ens et al.. 1992 who describe the existence of different breeding 
strategies in Oystercatchers; resident breeding (breeding in high quality territory), leapfrog breeding 
(breeding in poor quality territory) and queuing. This led to the development of the queue 
hypothesis, which explains the large number of birds in low quality territories from the trade-off 
faced by nonbreeding individuals between queuing for a high quality territory or settling quickly in a 
low quality territory (Ens et al. 1995, van de Pol et al 2007).  
The Oystercatcher studies on Schiermonnikoog are now at a point where there is a need to map in 
great detail individual variation in behaviour in space and time. This can help answering the current 
main questions, which include behaviour of new recruits, territorial behaviour, cooperation and 
conflict in parental care and mating behaviour. Obviously, biologgers can help answering this 
questions. The study area on Schiermonnikoog offers good possibilities for a pilot study on biologged 
Oystercatchers. Throughout the breeding season, resident breeding Oystercatcher stay mostly close 
to their nests, either for feeding on the mudflats or for incubating and roosting on the saltmarsh 
(Kersten 1996). It is only after the breeding season that Oystercatcher more frequently leave their 
territory for feeding further on the mudflats of the Waddensea and start roosting in big social roosts 
on the salt marshes. This close to the nest behaviour raise the possibility to observe biologged 
Oystercatchers in a known area. In this way a whole range of behaviours can be observed and linked 
to acceleration measurement. This data can eventually be used to build a classification model.  
Such a classification model can be of great help in answering the current main issues for the 
Schiermonnikoog population, as well as answering ongoing question in animal behaviour, which 
includes day-night behaviour of shorebirds, estimating energy budgets and calibrating foraging 
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 Figure 1. Our study location on the island of Schiermonnikoog, the Netherlands. The coloured circles are 
geolocations of three biologged Oystercatchers on 1 July 2009. The black circles are nests of the biologged 
birds with working devices. The coloured circles are geolocations of the logged birds on 1 July 2009. The bird 
communicate with the antennae’s on the observation towers (blue squares). These antennae’s send the data 
to the base station where it is stored on a computer. Dark lines represents creeks, dark grey lines are urban 
infrastructure. 
 
models. Furthermore, a quantitative analysis of behaviour can improve our understanding of how 
birds organize their time in the Wadden Sea, what specific activities take place and how these are 
divided during the day, season or year.  This information can be used to study the impact of climatic 
and land use variation as well as human disturbance. Here we meet the applied part of the story. 
Biologgers can be of great help in conservation ecology (Bograd et al., 2008) and could have been of 
great help in previous conservation studies on Oystercatchers. For instance, experiments where 
individual Oystercatchers were deliberately disturbed from their preferred foraging site would have 
yielded more insights, if the behavioural response of the disturbed birds could have been followed 
with biologgers, both in space and time (Urfi et al 1996; Rutten et al 2010). There is a great need for 
further conservation studies on Oystercatchers, not only because Oystercatchers are a good model 
species for conservation ecology, but moreover because the Dutch population of Oystercatchers has 
declined by 50% since 1990 (van Dijk et al. 2006). Conserving the Dutch population is necessary since 

Base station
Observation towers

& antennae's

400 m

Saltmarsh

Mudflat

Schiermonnikoog
53.29° N – 06.10° E

the Netherlands

3 km



 6 

30% of the European population breeds in the Netherlands (Hagemeijer & Blair 1997). It was 
hypothesized that, among others, the declining Oystercatcher population is caused by a decline of 
their major food (bivalves such as Cockles Scobicularia and Mussles Mya) in the Waddensea (Ens et 
al. 2009), which was argued to be due to shellfishery (Piersma et al., 2001, Ens et al. 2006). Model 
studies using WEBTICS predicted that the carrying capacity of the Waddensea for Oystercatchers 
depends on the shellfish beds that are least emerged within a tidal cycle (Rappolt et al. 2003). 
Currently 60 Oystercatcher are equipped with a biologger to test this hypothesis by logging 
geolocations and acceleration. The results will be incorporated in the recovery programs of the 
musselbeds (e.g. within de program “Naar een Rijke Waddenzee”) 
http://www.waddenzee.nl/Naar_een_rijke_Waddenzee.natuurherstelprogramma.0.htm). Our study 
facilitates this program by serving a model that can be used to interpret the acceleration data.  

 
 

Methods 
 
Biologgers. We used solar-powered biologgers that were developed by the University of Amsterdam.  
The loggers weigh on average 13.5 gram and can be attached to birds with a harness of ~2 gram. This 
means for Oystercatchers that ~3 % of their mass is added when equipped with such a device. One of 
the remarkable features of this logger is that it can record the position of the bird at a very high 
frequency, i.e. with an interval of only three seconds. The loggers communicate via a Zigbee wireless 
connection, which means that all data is send directly to a base station (in contrast to the standard 
ARGOS satellite transmitters where each fix is downloaded from the satellite for a set price). Besides 
the location, the loggers measure several features, among which the instantaneous speed and tri-
axial acceleration is the most important for this study. Instantaneous speed (hereafter speed) is the 
speed measured by the GPS (and not the speed calculated between two points). The accuracy of the 
speed is estimate as less than 1 ms ¯¹ (accuracy estimate from the UBLOX website, www.ublox.com) 
and is negatively affected by bad weather (W. Bouten, pers. Comm.). Studies comparing 
instantaneous speed and speed with a speedometer on a bicycle report that speed on ground was 
within 0.2 ms¯¹ in 45% of the values with a further 19% lying within 0.4 ms¯¹ (Witte & Wilson, 2004). 
Foraging Oystercatchers were previously reported to forage with a speed between 0.5 and 0.4 ms ¯¹ 
(Ens et al. 1996). Consequently, we expect that foraging is at such a low speed that it will be difficult 
to use measured speed to differentiate flying and not flying Oystercatchers because the range of 
errors of measured speed will overlap.   
The acceleration sensor measures acceleration with respect to the earth gravitational field in three 
directions: surge (X), sway (Y) and heave (Z) (Figure 2). The output of the transducers is in milivolts, 
but can be converted into g after calibrating, by rotating the units through all combinations of pitch 
and roll (Wilson et al., 2006). Our accelerometers were not calibrated; a mistake that other studies 
has made as well (Vivian et al. 2010). Nevertheless, we could convert the measured values into g by 
dividing them by the average calibration value (1350) of similar devices that were produced by the 
same manufacturer. The measured acceleration is the result of both a static and a dynamic 
component (Shepard et al. 2008) and these two components should be disentangled when using 
acceleration data in analysis. The static component is a measure of the incline of the accelerometer 
with respect to the earth’s gravitational field. It may be derived from the measured acceleration by 
smoothing (Wilson et al., 2005), or by taking the (moving) average (e.g. Yoda et al. 1999). In this 
study the average was taken per 3 second interval. Tri-axial static acceleration enables a calculation 
of the body angle in the pitch and roll (see Shepard et al. 2008 for a detailed description). In this 
study a pitch of 0° means that the logger is in a horizontal position. A pitch of 90° means a vertical 
logger where the antennae points upwards and a pitch of -90° a vertical logger where the antennae 
points downwards. Other studies (e.g. Watanuki et al. 2005) correct for attachment angle when 
calculating the pitch angel. In the discussion we explain why it is not necessary to correct for 
attachment angle in this study.  
The dynamic component represents the change in velocity as a result of body motion. It is obtained 
by subtracting the static acceleration from the measured acceleration.  
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Figure 2. A) The biologgers that were used in this study and B) one of the Oystercatchers that was equipped 
with a biologger. The arrows indicate the direction in which acceleration is measured. Picture B) by Jeroen 
Onrust 

 
Figure 3. (A) Observation tower and (B) view from the observation tower. Pictures Jeroen Onrust 

 
Study area & Fieldwork. During the breeding season of 2009 (May-July 2009), 11 Oystercatchers 
breeding adjacent to the mudflats (i.e. resident birds) were selected to be equipped with a logger. 
The selected birds were breeding long enough (approximately 20 days) to avoid nest desertion after 
catching. The birds were caught on their nest with a walk-in trap, after which a logger was fitted on 
their back using a harness. The harness was made in such a way that it would fall off the bird after 
approximately three years due to deterioration of the cotton rope. The procedure of catching and 

Heave (Z) 

Sway (Y) 

Surge (X) 
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releasing lasted 30-60 minutes. For communication with the loggers, three antennas were set on the 
two observation towers that were standing within 50m from the nests. Due to technical problems, 
nine loggers stopped working within several days after they were fitted on the birds. The three birds 
that carried a working device could be observed daily in the period of 30 June - 14 July by Roeland 
Bom. Each bird was observed for 30 minutes from either observation tower (Figure 3) through a 
telescope. When a bird started a new behaviour, this was called out and recorded by a field assistant 
in a PSION (handheld computer), using the program Observer XT (www.noldus.com). This procedure 
was practised extensively on non logged birds before performing on the logged birds. The defined 
behaviours follow the study of Kersten et al., (1996), extended with 17 (sub) behaviours observed in 
the field. Table 5 (see the appendix) gives the distinct behaviours. Behaviours were defined to be 
mutually exclusive. For later analysis, the time of the handheld computer was set to GPS-time (by 
using a handheld GPS) before each observation started. During observations on logged birds, the 
loggers were set to make a GPS fix with a 10 second interval. Acceleration was measured with a 
frequency of 20 Hz for 3 seconds, directly following a GPS fix. To avoid exhausting the batteries, after 
the observations a logger was programmed to log with a conservative program, with a GPS and 
acceleration fix every 10 minutes in summer. In autumn, winter and spring, solar power is limited 
and the loggers were set to log every 30 minutes or less, depending on the battery voltage. For the 
same reason, acceleration could not be measured in winter. 
 
Data selection. It is expected that there is a delay between the initiation of a new behaviour (by the 
bird) and the recording of the change in behaviour (by the field assistant). This delay was calibrated 
during two days when the loggers were set to record continuous acceleration for 30 minutes. With 
this data it is possible to distinguish very different behaviours, such as the transition from walking to 
flying, and thus, to measure the time delay. After the observation time was corrected for the delay 
time, the observed behaviour was connected to the logger data. This labelled data was used to 
develop classification models. Two models were developed, one, the speedmodel, is based on speed 
data only, and the second, the accelerationmodel, is based on speed-, and acceleration data. This 
distinction in models was made since to test whether speed alone can be an appropriate measure to 
classify behaviour. 
 
Speedmodel. For developing the speedmodel speed was taken as the predictor. We expect that 
there is no difference in speed in the “no movement” behaviours (e.g sit, stand, body care, handle in 
situ), and that the differences with speed in the “terrestrial locomotion” behaviours (e.g. walk, 
forage, handle, walking) can’t be recorded because they are within the accuracy error of the speed 
sensor. Hence, we suppose that for building the classification tree, we can use the behaviour groups 
“no movement”, “terrestrial locomotion” and “fly”. Nevertheless, before doing so, we test if there is 
a significant difference of speed within each group by using a Tukey HSD-test.  
 
Accelerationmodel. Table 1 presents the 16 parameters which were used to serve as a predictor for 
Oystercatcher behaviour. All predictors are calculated from measured acceleration, except 
instantaneous speed, which was directly measured by the GPS. Instantaneous speed is included in 
this model to test if it is more powerful predictor for Oystercatcher behaviour than the predictors 
derived from measured acceleration. We note that in theory surge body pitch and heave body pitch 
should measure the same value with a difference of 90°, however this is not always obtained (see 
Shepard et al. 2008 for an explanation). Hence we use both values to determine which appears to be 
the best predictor. We do not analyze our data by using wavelet transformations as other studies 
proposed (Sakamoto et al. 2009) as our 3 seconds of acceleration is short enough for a static Fast 
Fourier transformation instead of a dynamic wavelet analysis. In this way our supervised data can be 
analyzed using a much more simple method.  
All the mentioned predictors were used in other studies before (see Watanabe et al. 2005 for a good 
description), except for the average absolute acceleration, which we consider to be the best measure 
for the total activity of the bird during three seconds. 
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We use each behaviour as a dependent variable. We don’t aggregate behaviours into groups, as was 
done in the speedmodel, because the approach of classifying behaviour by using tri-axial acceleration 
is so new and complex that machine learning is needed to determine how behaviour can be 
classified.  
 
Table 1. parameters which were used to serve as a predictor for Oystercatcher behaviour in the 
accelerationmodel 

 

Predictor Dimensions Indication for 
body pitch (°), surge, heave Angle of the body along the lateral axis 
body roll (°),  Angle of the body along the longitudinal 

axis 
maximum dynamic acceleration 
(g) 

surge sway and heave  

average absolute dynamic 
acceleration (g/s). 

surge sway and heave Total activity of the measured 
acceleration 

dominant power spectrum surge sway and heave Periodicity of the measured 
acceleration calculated with Fast 
Fourier Transformations 

frequency given at the 
dominant power spectrum (Hz) 

surge sway and heave Frequency of the periodicity of the 
measured acceleration calculated with 
Fast Fourier Transformations 

Instantaneous speed (m/s)   
 
 
Statistics. Classification trees (Breiman et al. 1984) were used to built the speed- and 
accelerationmodel. This was done in the R statistical software where the recursive partitioning and 
regression trees method were applied. The rpart package (Therneau & Atkinson, 1997) was used for 
this analysis. This procedure initially grows a maximal tree and then prunes the overfitted tree to an 
optimal size by selecting the tree which minimize the cross-validated error (misclassification error). 
This best pruned subtree is the tree that is presented in the results and is used for constructing time 
budgets.  
We examined the reliability of the best pruned subtree by comparing the cross-validated error of this 
tree with the cross-validated error of a tree where each predictor was randomized independently.  
We further examined the predictive accuracy of the best pruned subtree with a running unbiased 
estimate of the classification error. This is obtained from the random forest approach (Breiman 2001, 
available in the R software in the randomForest package (Liaw and Wiener 2002)). This approach 
builds a tree with a random subset of 2/3 of the data, and uses this tree to get a cross-validated error 
over the data that was left out. The method grows 500 trees, each tree using randomly a different 
subset of the data.  Eventually all cross validated errors are aggregated which gives a very robust 
running unbiased estimate of the classification error (known as the “Out of Bag estimate of error“). 
The result of this  “Out of Bag estimate of error“ is expected to be better than the results of cross-
validated error of the best pruned subtree. However, since the approach results in an ensemble of 
classification trees, and not a single tree, we have to stuck to the best pruned subtree for 
classification.   
Thus, in reliable classification models, the cross-validated error of the best prune subtree should be 
lower than the cross-validated error of the randomized tree and close to, or slightly higher than the 
“Out of Bag estimate of error“ of the random forest approach.  
 
Time budgets. The best pruned subtree of both the speed- and accelerationmodel was used to 
classify the behaviour of every logged record within the period May 2009 – Sept 2009 and Nov 2009- 
March 2009. The data of November 2009 consists of six recordings and these were not used for 
further analysis. There was more speed data than acceleration data available (Table 8 & Table 9, see 
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appendix) We used each labelled record to calculate for each bird, in a set time period of one month, 
the percentage of time devoted to a specific behaviour. Since the loggers were programmed to log 
on a regular time interval (independent from day/night, tide, habitat etc.) the percentage of time 
devoted to a specific behaviour could be calculated by dividing the number of observations of this 
behaviour by the total number of observations.  
To show some possible implementations of how time budgets can be used in Oystercatcher studies, 
we construct day and night time budgets and make time budgets for different habitats. For the day-
night time budgets, day was set to start at sunrise and night was set to start at sunset. Data on 
sunrise and sunset was calculated from http://www.dekoepel.nl/calculator.html. For the time 
budgets in different habitats, we distinguish four very basic habitats which we think reflects spatially 
the key places in the life of resident breeding Oystercatchers on Schiermonnikoog. These habitats 
are: the social roosts, the mudflats outside the territory, the mudflats inside the territory and the 
territory on the salt marsh. A bird was set to be in its territory, either on the mudflats or on the salt 
marshes, when it was within 150 m from its nests. This distance was chosen after visually inspecting 
the geolocations of each individual in Google Earth (http://earth.google.com) were it appeared that 
the logged birds either stay within 150m from their nest or go far out to the mudflats. 
After calculating time budgets for each individual, the average (± Standard deviation (SD)) 
percentage of time was calculated per month. As this study is based on three loggers, no further 
statistics are computed. 
 

 

Results 

Table 2 gives information on the three birds that we could successfully equip with a working logger, 
and observe in the field afterwards. During field observations on the three birds with a working 
logger, 18 behaviours were observed and linked to 925 GPS fixes and subsequent accelerometer 
measurements.  
All nests of the birds with a working logger were predated within two days after catching. The 
predated nests are probably not because of our intervention, since predation on all Oystercatcher 
nests in the study area was high in these days. Furthermore, nests of earlier caught birds with failing 
loggers were not predated. However consequently this means that we could not make reliable 
recordings of incubating birds. 
 
Table 2. Information on the three birds that we could successfully equip with a working logger. 

 

Ring code Logger # Sex Body mass Start logging Nest faith 

WR101RW3 166 Male 483 30 June 2009 nest predated at 30-6 
GW111W3 167 Male 577 29 June 2009 nest predated at 1-7 
GB021B3 169 Female 502 29 June 2009 all nests predated at 1-7 

 
Data selection. There was a delay in time in the performed behaviour (by the bird) and the recorded 
behaviour (by the field assistant) between 0-10 seconds (Average = 5 s, N = 62, SE = 0.25). This means 
that somewhere within the last 10 seconds of a recorded behaviour, the bird actually started a new 
behaviour. The data points that fall within this time period were not used for further analysis. This 
yielded 702 labelled data points on which the classification tree of both the speedmodel and 
accelerationmodel was based (Table 6, see the appendix).   
 
Speedmodel. Mean speeds did not differ significantly between behaviours within the selected “no 
movement” and “terrestrial locomotion” behaviours (all p>0.05, Tuckey HSD test). Hence, these 
behaviours were aggregated and the classification tree was built on the three categories: “Fly”, 
“Terrestrial locomotion” and “No movement”. Table 5 (appendix) shows for each behaviour 
information into which group it is aggregated. In the best pruned subtree tree (Figure 4), 474 out of 
702 observations are correctly classified (cross-validated error 32%, calculated from Table 3). This 
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tree is only slightly better than a tree where speed was randomized (cross-validated error of 35%), 
indicating that the reliability of the best pruned subtree is low. It has the same cross validated error 
as the “Out of Bag estimate of error” given by the random forest approach This demonstrates that 
trees grown with a random subset of the data return the same cross validated error, indicating that 
the best pruned subtree cannot be improved in either way.   
Within the selected model, fly is classified correctly in 92% of the cases. Observed behaviours 
belonging to the “Terrestrial locomotion” group are in 46% of the cases predicted to be in the “No 
movement” group and vice versa behaviours belonging to the “No movement” group are in 18% of 
the cases predicted to be in the “Terrestrial locomotion” group.  
 
Table 3. Confusion matrix of the speedmodel. 
 

Observed 
  Fly Terrestrial locomotion No Movement 

P
red

icted 

Fly 12 0 1 

Terrestrial locomotion 1 183 85 

No Movement 0 141 279 

 
Accelerationmodel. The best pruned subtree that was built on acceleration data can classify five 
behaviours: fly, forage, sit, stand and wax. The tree uses the average absolute dynamic acceleration 
in the surge, sway and heave and the pitch angle measured in the heave to classify behaviour. Other 
predictor derived from measured acceleration and instantaneous speed were not selected and are 
consequently less useful to classify Oystercatcher behaviour. In the tree, 512 out of 702 observations 
are correctly classified (cross-validated error of 27%, for detailed information see Table 7 in the 
appendix). The tree is considerable better than a tree where each predictor was randomized 
independently (cross-validated error of 35%), indicating a high reliability of the best pruned subtree. 
The cross-validated error of this tree is slightly higher than the Out of Bag estimate of error (23%) 
indicating a high reliability of the selected subtree. 
All active behaviours on ground (e.g. handle, walk, aggressive behaviours) are classified as “forage”. 
Hence, in further presentation we aggregate these behaviours into one group which we call 
“terrestrial locomotion”. When aggregating all active behaviours on ground into one “terrestrial 
locomotion” group, the cross-validated error is reduced to 13% (Figure 5 cross-validated error 
calculated from Table 4). 
The way behaviour is predicted by the tree correspond with field observations on the logged birds: 
when the bird moves actively (in the heave), the bird is either flying or foraging, depending on how 

No movement 

Fly Terrestrial 
locomotion 

is the speed = > 0.19 m/s? 

Is the speed > 3.5 m/s? 

NO 

NO 

YES 

YES 

Figure 4. The classification tree that shows how speed can be used to predict three different groups of 
behaviours 
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much it is moving. When there is not much movement in the heave, the bird is either standing or 
sitting, depending on the angle of the pitch; a horizontal or positive angle means that the bird is 
sitting and a negative angle with respect to the horizon means that the bird is standing. While 
standing, the bird can also preen its feathers, and this is when there is a sideways movement in the 
sway, as the bird goes with the bill to the gland on the back. In Figure 6 show some figures of classical 
examples of the behaviours that are possible to classify.  
 
Table 4. Confusion matrix of the accelerationmodel. 
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Figure 5. The classification tree that shows how acceleration can be used to predict five different groups of 
behaviours. 

NO YES 

is the average absolute dynamic 
acceleration in the sway = < 0.4 g/s? 

Stand 

Terrestrial 
locomotion 

Preen 

Sit 

Fly 

is the average absolute dynamic 
acceleration in the surge = < 1.9 g/s? 

is the heave pitch angle < 0.72°? 

NO 

NO 

YES 

YES 

YES 

NO 

is the average absolute dynamic 
acceleration in the heave = < 10.4 g/s? 



 13 

 
 
  

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

time (s)

d
y
n
a
m

ic
 a

c
c
e
le

ra
ti
o
n
 (

g
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

time (s)

d
y
n
a
m

ic
 a

c
c
e
le

ra
ti
o
n
 (

g
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-5
0

5
1
0

1
5

time (s)

h
e
a
v
e
 b

o
d
y
 p

it
c
h
(°

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-5
0

5
1
0

1
5

time (s)

h
e
a
v
e
 b

o
d
y
 p

it
c
h
(°

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

time (s)

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

time (s)

d
y
n
a
m

ic
 a

c
c
e
le

ra
ti
o
n
 (

g
)

Terrestrial locomotionFly

Preen Stand / Sit

Stand Sit

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

time (s)

d
y
n
a
m

ic
 a

c
c
e
le

ra
ti
o
n
 (

g
)

Figure 6. Classical examples of the behaviours that were possible to classify. The upper four figures show 
figures of dynamic acceleration. Fly, terrestrial locomotion and preen can be classified when using the average 

absolute dynamic acceleration respectively in the surge, heave and sway. The plotted lines represent the 
dynamic acceleration in the Surge, Sway and Heave. Stand and sit cannot be classified using dynamic 
acceleration, since in both cases the dynamic acceleration is equal to 0. Stand and sit can however, be 
classified using heave body pitch, which is shown in the lower two figures.  
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Time Budgets 
Although the accelerationmodel has a considerably smaller cross-validated error than the 
speedmodel (13% versus 33%), and hence can be considered as a better model for constructing time 
budgets, figures of both models are presented because acceleration data is scarce for the winter 
months and we can in this way examine the consequence of the different models. Figure 7 shows 
average (± SD) time budgets per month for the speed model (A) and the acceleration model (B), 
where a distinction is made between day and night. For the readability of Figure 7b, stand, sit and 
preen are aggregated into a “no movement” group. Time budgets of stand, sit and preen are 
presented in Figure 8.  
Both Figure 7 and Figure 8 show that Oystercatchers are most of the time inactive. Remarkable little 
time (less than 1%) is spent to flying. Both figures clearly show that birds tend to move more during 
the day than during the night. Instead of being active, they devote their night time to standing, as is 
shown in Figure 8. In the discussion we come back to the differences of classifying behaviour 
between the speedmodel and the accelerationmodel. 

 
Figure 7. Monthly percentage of time devoted to different behaviour for three Oystercatchers. Each point 
represents the average time devoted to behaviour (± SD) which was calculated after pooling the data for each 
individual. Figure A gives the time budgets predicted by the speedmodel and figure B by the 
Accelerationmodel. The differences between day and night are presented. In figure B, for the readability of the 
graph, no movement activities are aggregated. 
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Figure 9 shows the proportion of time the logged Oystercatcher have spent in each habitat per 
month. The figure shows that outside the breeding season (December-February) the logged 
Oystercatchers have been most of the time on the mudflats or on roosts outside their territory. With 
the upcoming breeding season (March), the birds went back to their territory, both on the mudflats 
(for foraging) and on the saltmarsh (for roosting).  
The time budgets per habitat over the entire period are presented in Figure 10 for (A) the 
speedmodel and (B) for the accelerationmodel. The figure shows that, in general, Oystercatchers 
seems to spend the same amount of time in mudflats in and out of territory but they use their time 
differently; birds were more active on the mudflats outside then on the mudflats inside their 
territory.  

 
 

 
Figure 9. Monthly percentage of time that the three logged Oystercatchers have spent in different habitats. 
Each point represents the average time that is spent in a habitat (± SD) which was calculated after pooling the 
data for each individual. 

 

 
Figure 8. Percentage of time devoted to different behaviour during day or night for three Oystercatchers. 
Each bar represents the average time devoted to behaviour (± SD) which was calculated after pooling the 
data for each individual. Behaviour is predicted using the accelerationmodel. 
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Figure 10. Percentage of time the three logged Oystercatchers devoted to different behaviour for the distinct 
habitats. Each bar represents the average time devoted to behaviour (± SD) which was calculated after pooling 
the data for each individual. Figure A gives the time budgets predicted by the speedmodel and figure B by the 
accelerationmodel. In order to compare figure B with A the “No movement” behaviours sit, stand and preen 
are shown in stacked columns. 
 

 

Discussion 
We show that speed measured by GPS loggers is an excellent predictor for classifying a flying 
Oystercatcher. The threshold between speed and other behaviours is defined as 3.5 m/s. All 
measured speed below the threshold of 3.5 km/hr are classified as not flying birds, but it is hard to 
use speed for further classification. This includes all “No movement” and “Terrestrial locomotion” 
behaviours. We show that “No movement” and “Terrestrial locomotion” can be classified when using 
predictors derived from tri-axial acceleration measured with biologgers. In addition, these predictors 
can classify three behaviours that are within the “No movement” category; preening, sitting and 
standing. Behaviours that are within the “Terrestrial locomotion” category such as handling, walking 
and aggressiveness could be observed in the field, but could not be classified with the predictors that 
we derived from tri-axial acceleration. Hence, tri-axial acceleration can be used to develop very 
accurate time budgets throughout the year of key behaviours of Oystercatcher. This can be of great 
help answering many of the current questions addressed in Oystercatcher research, such as 
behaviour of new recruits, territorial behaviour, cooperation and conflict in parental care and mating 
behaviour, day night behaviour of shorebirds, as well as habitat use. However, at this point it is too 
early to use acceleration to calibrate optimal foraging models which include quantities such as 
handling time and pecking rates. 

A 

B 
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Speedmodel. Our study is in agreement with other studies that instantaneous speed is a reliable 
predictor for flying birds (e.g. Klaassen et al. 2008). In line with our study we could not find any study 
that successfully used instantaneous speed to classify more behaviours on birds. Thus our 
expectation, based on the given accuracy of speed (Witte & Wilson, 2004) and the reported speed of 
foraging Oystercatchers (Ens et al., 1996), that instantaneous speed is too inaccurate to separate 
behaviours other than flying is confirmed. Differential GPS (dGPS), which compares the known 
position of a fixed receiver with that determined by the GPS device, will probably yield a more 
accurate speed registration (reported accuracies with a standard deviation of 0.03 ms¯¹, Witte & 
Wilson, 2004), however the equipment for such a study is both bulky and costly. To come to a more 
detailed classification of behaviour other than flying/not flying, we recommend to use tri-axial 
acceleration. 
 
Accelerationmodel. Former studies using biologgers measuring acceleration used several techniques 
to come to a classification model. Many studies build their models after inspecting the data visually 
because their study object could not directly observed. In this way, Yoda et al. (2001) could classify 
seven different behaviours on Adélie penguins, Robert-Coudert et al. (2004) could classify six 
behaviours in Cape Gannets Morus capensis and Laich et al. (2008) (further described by Wilson et al. 
(2008)) constructed decision trees similar to our study, which could identify eight behaviours for the 
Imperial cormorant Phalacrocorax atriceps.  A more sophisticated technique to analyze acceleration 
data was presented by Watanbe et al. (2005). They used supervised data and fast Fourier 
transformation to characterize acceleration signals. In this way they could classify eight basic 
behaviours of the Domestic cat with a classification accuracy of 57%. In a search to classify more 
complex behaviours using acceleration, Sakamoto et al. (2009) developed software that could 
automatically (unsupervised) generate ethograms from acceleration measurements on the European 
shag, using continuous wavelet transformation. This yielded 20 groups probably belonging to seven 
behaviours. The approach of Sakamoto et al. (2009) was, among others, applied by Viviant et al. 
(2010), who could successfully detect prey capture attempts in Stellers sea lions Eumetopias jubatus, 
and by Whitney et al. 2010 who could distinguish mating events of Nurse sharks Ginglymostoma 
cirratum. Despite the different methods, all studies, including our study, showed that biologgers 
measuring acceleration can be used to classify basic behaviours of animals. So far, there are no 
studies that could derive very complex patterns of behaviour from measured acceleration.  
It is possible that a classification method for more complex behaviours such as handle, individual 
pecks and steps can be found with a very fine-scaled analysis of behaviour, using video recordings of 
birds that are logged at a high frequency. Video recordings have the advantage that they can be 
played back and played at reduced speed. Moreover, they allow more (independent) observers that 
can use the ethovision software developed by Noldus (www.noldus.com). Nevertheless, at this stage, 
when looking by eye at the acceleration data that was linked to observed behaviour of 
Oystercatchers, it is hard, if not impossible to see any consistent difference within the “Terrestrial 
locomotion” behaviours. Measured acceleration of a foraging, handling, walking or aggressive bird 
looks in all aspects similar (Figure 11).  
We conclude that the selected accelerationmodel can classify 5 basic behaviours quite accurately 
within a cross-validated error of 13%. It is not expected that the misclassified cases are due to 
malfunction of the accelerometer, but rather due to the variation in behaviour of Oystercatchers. For 
example, four times (2%) a standing/sitting Oystercatcher was classified to forage. We explain this by 
our observations that during sitting/standing, Oystercatchers sometimes shake their feathers, turn 
around or move from one leg to the other. We considered that these actions were too short to be of 
a different behaviour. However, it is likely that our classification model classifies this as a different 
behaviour. Vice versa, there are eight cases (3%) where a bird was observed to be foraging, but was 
classified to be either sitting or standing. The data of these cases look perfectly like a sitting or 
standing bird; there is no movement in either direction. We observed that Oystercatchers that forage 
by sight can stand for several seconds to look at a prey. Although we considered that this behaviour 
still falls within the foraging by sight category since it is time devoted to foraging, one can argue that 
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Figure 11. Arbitrarily chosen examples of how dynamic acceleration looks for a foraging (left figure) and 
handling (right figure) bird. When looking through all the figures of acceleration, there was no clear difference 
to see between a foraging and a handling bird. Hence, the left figure could as well have been a handling bird 
and the right figure a foraging bird. The plotted lines represent the acceleration in the Surge, Sway and Heave.  
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this type of behaviour should be classified in a different way.  Here we enter a fundamental issue 
regarding our defined behaviours. Since we observe the bird for a longer time, we determine that the  
this looking for prey is time devoted to foraging, but –of course- our classification model classifies 
this behaviour as standing. This is a shortcoming of our method to classify behaviour within a time 
period of three seconds, without looking to the behaviour that the bird performed just before or 
afterwards. Future studies that use our method should have this in mind and should adapt their 
classification system in advance to this way of classifying behaviour. 
 It was argued by Watanuki et al. (2005) that a correction of the attachment angle yields a better 
measure for pitch angle. We believe that in the case of the Oystercatcher, a correction for 
attachment angle is not needed. A correction for attachment angle would lead to a slightly different 
value for body pitch. Body pitch is, in our classification model, used to distinguish a standing bird 
from a sitting bird. The values of body pitch for standing and sitting are so far apart from each other 
that a small correction would not lead to a different classification. This includes the eight cases were 
a sitting birds was classified as a standing bird. Hence, future studies on Oystercatcher that use time-
budgets derived from acceleration do not have to go into the field to gather data that can be used to 
correct for attachment angle. A time saving conclusion. 
 
Time budgets. Contrary to our study, all previous studies using accelerometer attached to animals 
measured acceleration over a short time period (e.g. less than a week) because acceleration 
demands high battery power and storage capacity. Due to our solar powered devices and our choice 
to measure three seconds of acceleration on a regular interval, we are able to construct time budget 
throughout the year. We are not aware of any study that could make time budget in such a way.  
We constructed time budgets to show some of the possible implementations of the developed 
method. Indeed, the time budgets already show some interesting aspects of Oystercatcher behaviour 
on a spatial and temporal scale. For example, we show that Oystercatchers are most of the time 
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inactive and remarkable little time (less than 1%) is spent to flying. In general logged Oystercatcher 
were more active during the day than at night. Even in the cold winter of 2010, the birds did not 
forage much during the night (January averaged -0.6°, long term mean 2.8°, www.knmi.nl). We 
showed differences in behaviour between day and night, but the model can as well be used to study 
behaviour in relation to the tidal and lunar cycles and how the activity patterns are influenced by 
weather conditions.  
Figure 7 shows that there is more variation in behaviour between months when classifying behaviour 
with the accelerationmodel instead of the speedmodel. This is an important difference which shows 
that, indeed, the models have different results when classifying the three most basic behaviours of 
Oystercatchers. Since the accelerationmodel is considerably better in classifying behaviour it is this 
model that should be used in future studies, even when a classification of the three most basic 
behaviours is needed 
The results of the monthly time spent per habitat (Figure 9) shows that in the breeding season (June-
July) much time is spend in the territory, either on the mudflats or on the salt marsh (when roosting). 
However, there is a large variation between individuals (large error bars). This is not due to early 
failure of the breeding season; all nests of logged birds were predated in the same week. Hence, this 
represents individual variation (choices) among the logged birds. Eventually, when many 
Oystercatchers of the Schiermonnikoog population are equipped with a biologger these individual 
choices can be linked to fitness data.  
We have no indications that the loggers noticeably affect the behaviour of the Oystercatchers. After 
the birds were equipped with a logger, they went within several hours back to their territory where 
they performed normal behaviour such as incubating, foraging and a variety of aggressive 
behaviours. However, the logged Oystercatcher devote both during day and night surprisingly much 
time to preening, indicated by Figure 8. Although it is unknown how much time Oystercatcher 
“normally” spend to preening because it was never measured before (e.g not by Kersten, 1996), it is 
possible that the attached logger demands more body care such as preening.  
 
 

Conclusion 
 
Overall, we conclude that the current study shows that biologging can be used to distinguish several 
key behavioural classes. We show that this information can be used to calculate time budgets in a 
spatial and temporal scale. Such quantitative analysis of behaviour can improve our understanding of 
how Oystercatchers organize their time. Thus indeed, biologging can help answering many of the 
questions that are currently addressed concerning fundamental en conservational ecology of 
Oystercatchers. 
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Appendix 
 
Table 5. Different (sub) behaviour that we could observe on Oystercatchers. The last two columns show the group in which each behaviour was aggregated for building the 
speedmodel.  
 

Behaviour  sub behaviour Description Speedmodel 
Fly normal flight Bird is flying from A to B Fly 
Fly chase flight  Bird is chasing other birds (conspecifics / predators) Not observed 
Fly alarm flight Bird is calling while flying Not observed 
Fly transporting prey Bird is flying with prey Not observed 
Fly butterfly flight Bird is flying as a butterfly when it lands in his territory Not observed 
Fly piping ceremony in flight Bird is flying with conspecifics while calling loudly  Not observed 
Fly “schwirr flug” Bird is flying while moving its wings with high frequency. Not observed 
Walk  Bird is walking from A to B Terrestrial locomotion 
Stand  Bird is standing  No movement 
Sit  Bird is sitting No movement 
Incubate  Bird is sitting on the nest, breeding the eggs Not observed 
Body care Preen Bird is preening its feathers No movement 
Body care Head scratch Bird is scratching its head with its leg Not observed 
Body care Wash Bird is washing No movement 
Aggression Stand Solitary piping Bird is calling loudly while standing, conspecifics are nearby No movement 
Aggression Walk Solitary piping Bird is calling loudly while walking, conspecifics are nearby No movement 
Aggression Piping ceremony Bird is calling loudly together with other birds Terrestrial locomotion 
Aggression Diplomatist attitude / pseudo-sleep Bird is standing straight while aggressive Not observed 
Aggression Border dispute, including bobbing Bird is walking along its territory border while bobbing No movement 
Aggression Chasing Bird is chasing conspecifics Terrestrial locomotion 
Forage By sight  Bird is searching for prey by sight Terrestrial locomotion 
Forage By touch Bird is searching for prey by touch Terrestrial locomotion 
Handle Handling at surface Bird is handling the prey at the surface No movement 
Handle Handling in situ Bird is handling the prey beneath the surface No movement 
Handle Walking with prey Bird is walking with the prey Terrestrial locomotion 
Chick rear Feeding Bird is feeding its chicks Not observed 
Chick rear Breeding Bird is breeding its chicks Not observed 



 
Table 6. Number of recordings that could be linked to behaviour and were used for classification trees. Number 
between brackets refer to data that was used for the accelerationmodel. 
 

 Logger# 

Behaviour 166 167 169 
Aggression Bobbing 0 1  3 
Aggression Chasing 1 1 1 
Aggression Piping Ceremony 0 7 5 
Aggression Stand Solitary  11 2 5 
Aggression Walk Solitary 3 9 0 
Forage By Sight 100 111 38 
Forgage By Touch 5 0 0 
Fly Normal Fly 6 5 2 
Handle At Surface 5 10 0 
Handle In Situ 7 22  3 
Handle Walk 5 2 0 
Sit 19 81  0 
Stand 23 34  65  
Walk 1 20 4 
Body Care Wash 3 0 0 
Body Care Preen 53 7 22 
 
 
Table 7. Information on the complexity of the best pruned subtree of the accelerationmodel 

 
CP nsplit rel error  xerror xstd 
0.229581    0 1.00000 1.00000 0.027982 
0.200883    1 0.77042 0.77483 0.029244 
0.121413    2 0.56954 0.57616 0.028267 
0.028698    3 0.44812 0.49227 0.027230 
0.010000    4 0.41943 0.48124 0.027064 
 
 
Table 8. Number of speed recordings per month that were used to classify behaviour. 
 

 
 
 
 
 
 

 Logger 166 Logger 167 Logger 169  

Month Day Night Day Night Day Night  Total Day Total Night Total 

Jun 2009 61 23 134 61 53 21 248 105 353 
Jul 2009 2051 810 1989 774 2053 813 6093 2397 8490 
Aug 2009 316 177 324 190 324 193 964 560 1524 

Sept 2009 60 66 73 74   133 140 273 
Nov 2009   1 23 10   5 23 16 39 
Dec 2009 112 256 102 184 114 259 328 699 1027 
Jan 2010 102 203 31 12 102 184 235 399 634 
Feb 2010 227 316 60 20 194 267 481 603 1084 
Mar 2010 597 617 107 43 525 550 1229 1210 2439 
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Table 9. Number of available acceleration recordings per logger per month. 
 

 Logger 166 Logger 167 Logger 169 Total 

Month Day Night Day Night Day Night Day Night total 
Jun 2009 60 23 124 59 49 21 233 44 277 
Jul 2009 1893 777 1831 745 1960 789 5684 1566 7250 
Aug 2009 312 174 259 150 321 190 892 364 1256 
Sept 2009 58 65 73 74 0 0 131 65 196 
Jan 2010 7 6 0 0 51 61 58 67 125 
Feb 2010 589 612 0 0 470 482 1059 1094 2153 

 
 
 


